Strain Energy Density Prediction of Mixed-Mode Crack Propagation in Functionally Graded Materials
Abstract
The objective of this work is to present a numerical modeling of crack propagation path in functionally graded materials (FGMs) under mixed-mode loadings. The minimum strain energy density criterion (MSED) and the displacement extrapolation technique (DET) are investigated in the context of fracture and crack growth in FGMs. Using the Ansys Parametric Design Language (APDL), the direction angle is evaluated as a function of stress intensity factors (SIFs) at each increment of propagation and the variation continues of the material properties are incorporated by specifying the material parameters at the centroid of each finite element (FE). In this paper, several applications are investigated to check for the robustness of the numerical techniques. The defaults effect (inclusions and cavities) on the crack propagation path in FGMs are examined.