Wear simulation of a reciprocating seal by global remeshing
Abstract
Tribological modeling of elastomeric parts has high importance in engineering practice due to their widespread industrial use. Generally, the experimental investigation of the wear behavior is time consuming and expensive, which led to the development of numerical techniques. The common finite element method (FEM) based wear simulation techniques are usually limited to the top layer of the elements in the FE mesh. This can be insufficient in case of elastomers because of their high deformation.In order to model wear that is larger than the elements of the FE mesh, a wear simulation procedure was developed using global remeshing. By this new wear simulation technique, a reciprocating sliding seal was analyzed. Contact pressure distribution as well as the resultant sealing force was evaluated during the wear process. It was concluded that the wear reduced the contact pressure peaks along the ridges of the reciprocating seal. Around the lip similar tendencies were obtained during the simulated wear process. The results showed that the method is suitable for modeling wear even if it is three times larger than the element size in the vicinity of the contact area.