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Abstract 

The possible 'fundamental equations are looked for in cases of infinitesimal and finite strain 
based on the investigation of the acceleration wave. It is shown that also the selection of 
the kinematical equations has an important role besides the constitutive equation. 
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1. Introduction 

The fundamental equations of the continuum mechanics cannot be gener­
ally treated, because there is no mathematical model, a system of differ­
ential equations known describing the continuum mechanics using math­
ematics. The most important reason of it is the absence of a system of 
equations expressing the properties of the material of the bodies called 
the constitutive equations. However, the literature suggests a lot of equa­
tions, unfortunately, these can describe only the material behaviour under 
some given conditions. They are not only material properties but being 
connected to the whole motion or phenomenon, can be called the law of 
phenomenon. These have of course a great importance, but in applications 
always occurs the question whether they can really be applied to the prob­
lem under consideration. Obviously, a clear constitutive equation would be 
better. The question is whether it exists. In the following, the existence of 
such a constitutive equation is assumed and its properties are looked for. 
Knowing that the constitutive equation exists and knowing also its basic 
properties, one can construct it having done appropriate experiments and 
calculations. The investigations are restricted to solid continua. The main 
idea is that the physical changes in the continuum do not happen in the 
same time everywhere, they propagate from a starting point. A constitutive 
equation should contain this general experience. Such a changing property 
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is considered by the kinematical and dynamical compatibility conditions of 
wave dynar;:ics [1]. The investigations are restricted to acceleration wave. 

If cp(a;p) = 0, (p= 1, 2, 3, 4), the boundary of the part of the continuum 
where the change has already,?ccurred at a given time x4 =t, knowing the 

acceleration wave surface cp (xp
) = 0 

c= the wave propagation velocity, 

the normal unit vector of the wave front, 

the velocity of the element, 

the relative wave propagation velocity are obtained. 

The index p denotes the derivative according to xP and gpq is the con­
travariant metric tensor. The corresponding upper and lower indices mean 
a summation. 

The propagation of any physical changes in the continuum are con­
nected to positive and negative c functions. Its number is at most four. 
The fundamental equations of a continuum consist of the first and sec­
ond Cauchy equations of motion, the kinematical equations and a system 
of appropriate equations being the constitutive equation. From the num­
ber of the unknown functions in the equations of motion and kinematical 
equations one should have six material equations. 

Introducing the Cauchy stress tensor tkl, volumetric force density l, 
mass density p, the fundamental equations are: 

kl k . k 
t ;1 + q = pv , (1) 

(2) 

the kinematical equations, (3) 

!OI( ...... ) = 0 (a= 1,2, ... ) 6), (4) 

the constitutive equation. i/ denotes the acceleration of an element in (1). 
In the following, keeping the upper and lower indices the calculations are 
formed in a right angular Descartes coordinate system. 
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2. The Fundamental Equations of a 
Continuum Having Infinitesimal Strain 

Denoting the infinitesimal strain tensor by c} Eq, (3) is 

2'i i + j 
C)' = v')' v", , ,I 

kl "kl" ~ Let (4) be the function of t' ~ and c') ~, t , c') and x p • 
,P k 

For infinitesimal strain ' 

The constitutive equation is 

8 .. ij .,.ij _ .. ij _ .. 
.. -<;;. 4-Tt' 

f ( kl ij kl ij P) 0 
a t ~, C ~, t , c , X = , 

,p ,k 
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(3a) 

(4a) 

Using (1), (2), (3a) and (4a) and applying a lemma of Hadamard [1], the 
kinematical and dynamical material compatibility conditions can be formu­
lated for the acceleration wave [2], These conditions mean such a system 
of partial differential equations for the fuction tp which contains no tp but 
its first derivative tp'-j;' This system of differential equations is compatible 
if the equations 

(0:=1, ... ,6) (5) 

are satisfied expressing that the Poisson brackets are equal to zero, In (5) 
Fa=fa - fa is the difference of the values of fa: after and before the wave 

o 

surface. 
(5) is satisfied if [3] 

8Fc:.._L ~,8Fc:..=O, 
8t{)p {)/pq 8c-rq 

where {) and I are the functions of k, 1 and i, j 

{) (k 1) = ' { 
k 

k + 1 + 1, 

if 

if 

k = 1 

k =F 1 

(6) 

Function L{)/M is a function connecting the strain derivative /'\,{) and the 
wave amplitude of the stress derivative /L'Y [3], 
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If L,J-ypq does not contain tkl, p and gij k' moreover L,J-ypq= L,J-ybpq, the 

constitutive equation for infinitesimal strain from (6) is [4] 

(7) 

where t-Y are the coordinates of the stress tensor, t is the time. 
The computing methods make use of function matrices L,J-y and B-y in 

algebraic form possible. Having an appropriate number of problems solved 
and possessing the necessary number of experimental data, the elements of 
L,J-y and B-y can be obtained. In cases when the elements of L,J-y and B-y 
are the same, (7) is a law of phenomenon. If the elements of L,J-y and B-y 
are the same for all possible examples, (7) is a constitutive equation. Thus, 
the fundamental equations of a continuum having infinitesimal strain are 
the system of differential equations (1), (2), (3a) and (7' 

3. The Fundamental Equations of a 
Continuum Having Finite Strain 

The aim of the present investigation is to find the fundamental equations 
of a continuum having finite strain. One should start from the material 
equation (4). f 0: should be a function of only physically objective quantities. 

Thus, the stress and strain tensors t ij , aij and their physically objective t ij, 
~ ij velocities or flux and the coordinates x P can be taken into consideration 
as variables. The equation (4) is 

o .. 0 .. .-.. 

f (t l) a·· t') a·· x P) - 0 0: , 1) , , 1) , -, ( 4a) 

where a=l, ... ,6, i, j=l, 2, 3, p=l, ... ,4. 

Let t ij and ~ ij be the Lie derivatives on the tensor under considera­
tion on the velocity field v k [5], that is, 

C (t) ij - t' ij _ tkj i _ t ij j 
11 - v ;k v ;k 

and 

C() ' k k 
ll a ij=aij+akjV ;i+aijV ;j' 

Let aij be the Euler strain tensor 

G J( L 
aij = gij - KLX, iX, j, 

then, taking the Lie derivative of that equation 

(8) 
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(3b) 

is the kinematical equation. In (3b) Vij is the rate of deformation. The 
material derivative in Eqs. (8) and (3b) is for example 

a, .. - a" 4 +vPa·· I) - I), IJ,P 

in case of the strain tensor. Let us introduce notations 

and E ij = a/a 
a - 0 • 

aaij 
(9) 

Moreover, let vi, f-Li j and O:ij be the amplitudes of the acceleration, the 
stress derivative and the strain waves. Thus, if for example the strain 
derivative before the wave front 'P = 0 is a .. ~ then, after it is a . ·~+O:i)·'P~. 

o I),P OI)P P 

Using the dynamical compatibility condition 

. f-Li j n · v! - ___ J 

- pC' (10) 

the kinematical compatibility condition 

O:ij = 2P~2 . f-Lpgnq [(giP - 2aip)nj + (gip - 2apj)ni] . (11) 

Taking into account (10) and (11) from the material compatibility condi­
tion, the wave equation 

(12) 

is obtained [6]. 
Using index function {}(kp) instead of the kp index of the multiplying 

matrix f-Lkp , the determinant of the 6 X 6 matrix having the indices o:{} is 
zero. Thus, the relative wave propagation velocity C can be obtained. C, 
as it can easily be shown from (12), is a function of the stress tensor tij. 

The condition of the existence of a wave is given by the system of 
equations (5) as in part 2. It can be written from Eqs. (3b) and (4b) and 
consists of two parts in its present form [6]. One of them is multiplied by 
'Pp, the other one is not. The equation should be satisfied for all 'Pp, thus, 
both parts are zero. The first one is 
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+ ... = O. (13) 

(13) is zero, if 

(14) 

and then 

(15) 

and 

S ( qj i iq j) E rS( q q) k 
o:ij t /) + t /) = 0: aksgr + arkgs v . (16) 

From (14) and (15) 

S ij E kl 0 
a:ijf..L + 0: O:kI = . (17) 

Substituting (11) into (17) after simplification and with the aid of (16), the 
wave equation (12) is obtained. 

Expressions (16) and (17) can also be found in another way. The 

constitutive equation (4 b) contains in t ij and g ij the velocity v p
• Let 

ajo: = 0 avp , 

that is 

S ij E kl 0 
o:ijt ,p + 0: akl,p = . (18) 

Taking (18) after and before the wave front and subtractingthe second one 
from the first 

( ) ij (kl kl 
Saij - S o:ij t p + Eo: - Eo:) a kl 

o 0 I 0 0 
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(8 ij E kl) 0 + etijJ..L + et Cl:kl 'Pp = . (19) 

In (19) the lower zero denotes the values before the wave front. If 8 and 
E are continuous on the wave surface, then from (19) concludes 

8 ij E kl 0 (20) etijJ..L + et Cl:kl = . 
It is the same as the Eq. (17). Using (11), an equation can be obtained 
being similar to (12) concerning 0 2. The condition of this equation being 
the same as (12) is (16). Thus, (18) means that the constitutive equation 
does not depend on v p

• 

Returning to Eqs. (14) and (6), one can find that from the mathe­
matical point of view these equations are the same. If in this case Lijpq 

does not also depend on t ij and ~ pq, then, according to [4], a constitutive 
equation in the form 

Lijpqd t ij + d ~ pq = Bpqdt 

can be taken into account, or also from [4] the form 

can be considered, too. 

(21) 

In (22) the restriction to Lijpq In case of (21) is not valid and the 
other coefficient matrices are 

D~ . a f et _ a f et 
kpq a 0 - a k' a pq x 

The question whether (21) and (22) are constitutive equation or law of 
phenomenon can be answered by the investigation described at the end 
of part 2, thus Eqs. (1), (2), (3b) and (21) or (22) form the fundamental 
equations of the continuum mechanics. 

4. Summary 

The reason why the possible fundamental equations of the continuum me­
chanics cannot be treated is not only the absence of the constitutive equa­
tion, but also the several possible forms of the kinematic equation. Thus, 
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on selecting a constitutive equation, one should also consider the selection 
of the kinematic equation. 

If the results of the calculations by some symbolic manipulator pro­
gram and the experimental data correspond, the selected law of phenom­
enon can be a constitutive equation. Then, the law of phenomenon is 
the same system of equations for all motions and belongs to the possible 
constitutive equations. 
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