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Abstract

Chaos maps create a significant improvement in the optimization results of meta-heuristic algorithms by creating a balance between 

the stages of exploration and exploitation. The optimization algorithms of structures are strongly non-linear and non-convex, having 

several local optima. Chaotic functions, while creating chaotic jumps, provide the conditions for escaping from local optima to global 

optima. Most of the meta-heuristic algorithms fall into the trap of local optima and suffer some kind of premature convergence. In this 

paper, by forming three scenarios, chaos functions can be embedded into the exploration, exploitation or both stages at the same 

time, and improve the results of meta-heuristic algorithms. The considered algorithms are inspired by physical phenomena, with the 

possibility of accessing classical and regular relations, the effectiveness of chaos functions in meta-heuristic algorithms are increased. 

Nowadays, chaotic algorithms are widely utilized by researchers and are considered as a challenging topic. In the present research, 

the effects of logistic and Gaussian chaos functions on the optimization results of three physically inspired meta-heuristic algorithms 

are investigated. These algorithms include Chaotic Thermal Exchange Optimization (CTEO), Chaotic Big Bang-Big Crunch (CBB-BC), and 

Chaotic Tug-of-War Optimization (CTWO).
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1 Introduction
The attractive features of truss structures have increased 
the use of this group of structures in engineering fields. 
Thus, nowadays engineers are witnessing the increasing 
popularity of this group of structures. Covering large open-
ings with beautiful effects, lightness and economy, ease of 
production and implementation, speed of installation are 
some of the special features of trusses. In addition to these 
cases, the large number of members of these structures 
and their mass production in different uses such as sheds, 
industrial buildings, airplane hangars, power transmission 
towers and pedestrian bridges necessitate the optimiza-
tion of these structures in order to saving resources and 
costs has been justified. Based on this, in recent decades, 
the optimization of structures has been the focus of most 
researchers. Therefore, for engineering designs, in addi-
tion to components such as stress, deformation, thinning 
and buckling, the variables related to cost and efficiency 
and applying the economic aspects of the design should 
also be considered. One of the primary methods to achieve 

this goal is to use traditional gradient-based methods and 
check the derivative of the objective function. But these 
solutions always had their own limitations and problems. 
In most engineering problems, one did not have an explicit 
relation of the objective function, and had to enter into 
the complex discussion of partial derivatives and strongly 
"non-linear and non-convex" states. In some cases, after 
long calculations, the results lead to local optima. Also, 
with the increase in the number of decision variables, the 
complexity of the calculations increased exponentially 
and terribly. In these algorithms, instead of dealing with 
the derivatives of the objective function, it itself is evalu-
ated and with inspiration from natural and physical phe-
nomena, it obtains an improving process in successive 
iterations. The main reason for this choice is the charac-
teristics of natural phenomena that if there is a power-
ful place in mind, nature has done it in the best way [1]. 
The first choice of researchers for inspiration is the genetic 
evolution of living things over millions of years from the 
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beginning of their life. In this evolution, the characteris-
tics of living things are improved by the act of crossing 
and mutation, so that by adapting as much as possible to 
the surrounding environment, they win in the competition 
with other living things in the courtyard of life. Examples 
of these algorithms include Genetic Algorithm (GA)  [2] 
and Differential Evolution (DE) [3]. The second inspiration 
is to take advantage of the intelligence of animal swarms 
and their nature in search and access to food. The constit-
uent factors of this inspiration include population, cooper-
ation, communication, information exchange, information 
flow and self-organization. These components are evident 
in the swarm life of birds, fish, ants and other animals. 
A number of these algorithms include Particle Swarm 
Optimization (PSO) [4], Artificial Bee colony (ABC) [5], 
Cyclical Parthenogenesis Algorithm (CPA) [6]. Inspired by 
physical laws, the third group of meta-heuristic algorithms 
are formed. Examples of these algorithms include: Water 
Evaporation Optimization (WEO) [7], Thermal Exchange 
Optimization (TEO)  [8], Big Bang-Big Crunch (BB-
BC)  [9], Tug-of War Optimization (TWO)  [10], Charged 
System Search (CSS) [11], Colliding Bodies Optimization 
(CBO) [12], Harmony Search (HS) [13], Vibrating Particles 
System (VPS) [14]. Meta-heuristic algorithms with the ori-
gin of physical inspiration have regular classical relation-
ships and are more popular among researchers. These algo-
rithms have also played an important role in improving the 
optimization results of structures. Today, there is no limit 
to the scope of inspiration, so the fields of inspiration have 
expanded on a wide level and remarkable successes have 
been achieved in the state-of-the-art. Based on the tradi-
tional Nelder and Mead method, the Shuffled Complex 
Evolution (SCE-UA) [15] was proposed at the University of 
Arizona. The cases of inspiration are the geometric oper-
ators of contraction and reflection. The inspiration points 
in this improved algorithm and the Shuffled Frog-Leaping 
Algorithm (SFLA)  [16] were proposed, which is classi-
fied as a memetic algorithm. Other algorithms, such as the 
Shuffled Shepherd Optimization Algorithm (SSOA)  [17], 
Imperialist Competitive Algorithm (ICA)  [18] and 
Teaching-Learning-Based Optimization (TLBO)  [19], 
inspired by different behaviors, have made a significant 
improvement in the optimization of structures. For engi-
neering problems, meta-heuristic methods for optimiza-
tion are more successful. If these methods are compared, 
pests still affect them. Premature convergence, getting 
caught in the trap of local optima and slowing down the 
optimization process are among the plagues that affect 

meta-heuristic algorithms in standard mode. By embed-
ding chaos functions in the exploration and exploitation 
parts of these algorithms, the weakness of these algo-
rithms is largely eliminated. Lorenz has done extensive 
research on the performance of chaos functions. The most 
important features of chaos functions can be summarized 
in several cases. The constituent series of these functions 
are sensitive to the initial conditions, their dynamic state 
is compact, their behavior is similar to random but in prac-
tice they are deterministic, and the structure of their func-
tions is such that they do not have an inverse [20]. In our 
previous research, several chaos functions were investi-
gated where the results of Logistic and Gaussian functions 
improved the weakness of the exploration and exploita-
tion in the best conditions [21–24]. Therefore, in the pres-
ent research, only these functions have been incorporated. 
By embedding these functions in meta-heuristic algo-
rithms, the balance between exploration and exploitation 
is achieved and a significant improvement in optimization 
can be achieved with chaotic modes. 

2 Formulation of the optimization problems
The main parts of any optimization problem include the 
objective function, design constraints, and the bound 
of decision variables. For optimal design of truss struc-
tures, the objective function includes the weight of the 
structure, that must satisfy all the design requirements 
such as allowable stress, nodal displacement, slenderness 
constraints and buckling stress with the lowest possible 
weight. The  main variable in determining the weight of 
the structure is the cross-sectional area of the members, 
which should be selected within the lower and upper limits 
of the decision variables. The general form related to these 
issues is defined as Eq. (1).
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According to Eq. (1), A is the cross-sectional area of the 
members, W is the total weight of the structure, n is the 
number of members of the structure, gi and hi are design 
constraints. These constraints can include stress, member 
slender and nodal displacement. Also, AL and Au are the 
upper and lower bounds of the decision variables. The ini-
tial form of meta-heuristic algorithms for optimization of 
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unconstrained problems is presented. For this reason, the 
penalty function method with Lagrange coefficients is 
used in the modeling to convert the bounded function into 
unbounded one. In this method, if there is no violation and 
the answers satisfy the restrictions, the amount of the pen-
alty will be zero. But if there is a violation of the design 
constraints, its value is calculated according to Eqs. (2)–(6) 
and included in the penalized objective function as
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Equations (2)–(4) are related to stresses, displacements 
and slenderness ratios, respectively. The penalty function 
is presented in Eq. (5) and the objective function is formed 
after the penalty (merit function) in Eq. (6). 

3 Introduction of selected chaos map
The most important factor of stagnation and premature 
convergence in meta-heuristic algorithms is the imbal-
ance between the two stages of exploration and exploita-
tion. In such cases, the algorithm stagnates in the initial 
iterations and gets caught in the trap of local optima. 
The most appropriate solution to jump from local optima 
and transfer to global optima is to use chaos functions 
with different scenarios. Chaotic functions do not have 
any effect of random behavior, but by creating irregular 
behavior in the search space, it provides access to the near 
global optimal position. Among the other characteristics 
of chaos functions, the following can be mentioned: these 
functions are very sensitive to initial conditions and their 
dynamic behaviors are non-periodic, deterministic and 
ergodic, and the important point is that their functions 
do not have an inverse. These functions are established 
with sudden jumps near the global optimal position and 
create the necessary conditions to reach them. In some 
chaotic functions, the relation of the function is such that 
it converges from local minima to global minima with a 
very high probability. This group of chaos functions are 

suitable for improving algorithms that are weak in the 
exploration stage. In another group of chaos functions, 
the decision space moves towards local optima with a very 
high probability, this group of chaos functions is suitable 
for improving the exploitation conditions of algorithms. 
Therefore, this group of chaos functions can be embed-
ded in algorithms that have weaknesses in the exploita-
tion stage. In the embedding of chaos functions in meta- 
heuristic algorithms, at least one sample from each group 
must be present, and in the first scenario, the chaos func-
tion is embedded in the exploration part and in the second 
scenario, in the exploitation part. Also, in cases where 
behavioral imbalance in the algorithm requires a general 
replacement, chaos functions are used simultaneously in 
both exploration and exploitation parts of the algorithm. 
This state is introduced as the third scenario. It can be 
concluded that the use of Chaotic series for Optimization 
in meta- heuristic Algorithms (COA) has significant 
advantages over other methods. In chaotic algorithms, 
deterministic search replaces random search. With this 
replacement, a chaotic jump of local optima is performed 
and early convergence is resolved [25]. In order to illus-
trate how to embed the chaotic functions in meta-heuris-
tic algorithms, the flowchart of Fig. 1. In recent research, 
logistic and Gaussian chaos functions have been inves-
tigated. The first chaos function moves the search space 
from local optima to global optima. Therefore, it can be 
suitable for exploration. But the second chaos function 
transfers the results to local optima and is suitable for 
exploitation. By embedding these functions to meta-heu-
ristic algorithms, the problem of algorithms in standard 
mode of any type is improved. In order to familiarize with 
these chaos functions, the number of their initial 100 rep-
etitions are displayed in Fig. 2.

3.1 Logistics map
This map appears in nonlinear dynamic behaviors related 
to biological populations  [26]. The statements of chaotic 
sequences in the logistic function are obtained according 
to Eqs. (7) and (8): 

CHM a CHM CHMk k k� � � �� �1 1 	 (7)
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In the present studies, a = 4 has been utilized. The terms 
CHMk and CHMk+1 are related to series sentences of chaos 
map in consecutive order.
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3.2. Gauss map
Using this function in nonlinear dynamic behaviors 
has shown good results  [27]. The statements of chaotic 
sequences in the Gaussian function are obtained accord-
ing to Eq. (9): 
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Fig. 1 Flowchart for the chaos algorithm

Fig. 2 The chaotic value distribution during 100 iterations
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The terms CHMk and CHMk+1 are related to the series 
sentences of chaos map in a consecutive order.

4 Meta-heuristic algorithms and applying chaos 
functions
In 2012, Talatahari  et  al.  [18] embedded Logistic and 
Gossin chaos functions in the Imperialist Competitive 
Algorithm (ICA) and significantly improved the results 
of structural optimization. For each meta-heuristic algo-
rithm, two stages of exploration and exploitation are con-
sidered. These stages play a very important role in the 
convergence towards the optimal answer. In the explo-
ration phase, points of the search space that have a spe-
cial feature are selected, and in the exploitation phase, 
the neighborhood of the selected points is carefully 
examined. For comprehensive access to the search space, 
diversity in reviews is needed. In the standard mode of 
algorithms, this diversity is provided by random param-
eters. Therefore, using probabilistic functions with 
Uniform, Normal, Logistic or Levy distribution, these 
random parameters are selected. Studies show that ran-
dom parameters play a big role in increasing or decreas-
ing the speed of convergence. Also, in order to escape the 
trap of local optima and create a balance between explo-
ration and exploitation, these random parameters should 
be modified. Some of the advantages of the series created 
by chaos functions are: 

•	 their values are definite, 
•	 the sentences of the series are dynamic and 

non-repetitive, 
•	 the behavior of the series sentences is non-linear, 
•	 these sentences do not converge towards a specific 

limit, 
•	 and finally, the functions. 

The generator of these series is not reversible  [24]. 
Embedding chaos functions in meta-heuristic algorithms 
is done in different ways. 

4.1 Standard Thermal Exchange Optimization (TEO)
Inspired by Newton's law of cooling, Kaveh and Dadras [8] 
presented a new meta-heuristic algorithm called Thermal 
Exchange Optimization (TEO). According to Newton's 
law of cooling, the rate of thermal energy dissipation 
between the object and the surrounding environment is 
proportional to their temperature difference. If the energy 
exchange is separated between thermal particles into two 
separate parts, this exchange between the first half and the 

second half is similar to the movement of weak responses 
towards optimal responses during the optimization pro-
cess. In each iteration, the elitism of the algorithm is pro-
vided by allocating a memory to store the best result. 

4.1.1 Basic steps in Thermal Exchange Optimization
Step 1 Formation of initial responses: This algorithm, like 
other population-based algorithms, begins with the intro-
duction of initial responses. The selection range of these 
answers is based on the lower bound and upper bound of 
the decision variable. The number of populations is cho-
sen to create heat exchange nTO. These initial responses 
are evaluation based on objective functions and penalized 
objective functions.

Step 2 Forming groups to start heat exchange: In this 
step, the formed thermal particles are sorted based on the 
penalized objective function and then grouped into two 
equal parts. The constituent members of the first part 
(i = 1, 2, …, nTO/2) exchange heat with the members of 
the second part (i = nTO/2 + 1, …, n). This exchange is 
based on Newton's law of cooling.

Step 3 Updating the new position of the particles: after 
the thermal exchange between the particles, their new 
position is determined by the following relationship.

newTO i envTO i TO i envTO i i t� � � � � � � � � � �� � � � �� �exp � 	

(10)

In the presented relation, the position of the particles 
before the thermal exchange is envTO(i), which is trans-
ferred to a new position newTO(i) by performing the ther-
mal exchange. One can also use the following suggestions 
to introduce time and the β component.

t
NIT
NIT

i PFit i
PFit i

s

s

� � � �
� �
� �max

,
max

� 	 (11)

The components used in relation to time are the number 
of iterations in each stage NITs and the maximum number 
of iterations maxNITs. Also, in order to determine the β for 
each moment of time, the amount of the penalized target 
function and its maximum amount is considered.

Step 4 Probable components to prevent convergence: 
The previous steps are done according to deterministic 
relationships. At this stage, in order to escape from local 
optima and prevent premature convergence, two strate-
gies of exploration and exploitation are applied in ther-
mal exchange between particles. Embedding the Probable 
conditions of these two solutions is done by choosing the 
components of C, C1, C2 and rand command.
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newTO c rand TO� � �� �1 	 (12)

C C C t� � � �� �1 2 1 	 (13)

C rand C rand1 2� � � � � �round round, 	 (14)

Step 5 Applying elitism in the thermal exchange opti-
mization algorithm: The elitism conditions in this algo-
rithm are determined by allocating memories to store the 
best answers. Also, the best thermal exchange (TO-M), the 
target function (Fit-M) and the penalized target function 
(PFit-M) related to it are measured in each iteration with 
the previous results, and if the conditions improve, they 
are replaced.

Step 6 By checking the termination conditions, if nec-
essary, the particle thermal exchange operation is repeated 
from the second step.

4.1.2 Chaos-embedded Thermal Exchange 
Optimization (CTEO)
By performing thermal exchange and determining the new 
position of each of the exchanging particles, two stages 
of exploration and exploitation are considered to create 
diversity in the space of decision variables Eqs. (12)–(14). 
In this research, by embedding chaos functions in random 
choices, a significant improvement in optimization results 
is achieved. Embedding chaos functions is possible with 
several scenarios, which is examined below: 

•	 Scenario 1 Embedding the chaos function in the 
exploration part: In this scenario, the effectiveness of 
the chaos function in the exploration phase is inves-
tigated. Therefore, the first chaos function CHM1 is 
replaced in Eq.  (12). instead of randomly selecting 
the standard state. With this substitution, the equa-
tion changes as follows:

newTO c CHM TO� � �� �1 1 	 (15)

•	 Scenario 2 Embedding the chaos function in the 
exploitation part: In this scenario, the effective-
ness of the chaos function in the exploitation stage 
is checked. Therefore, the second chaos function 
CHM2 is replaced to evaluate the amount of C1 and 
C2 in Eq.  (14). instead of randomly selecting the 
standard state. With this substitution, the equation 
changes as follows:

C CHM C CHM1 2 2 2� � � � � �round round, 	 (16)

•	 Scenario 3 Embedding the chaos function in 
both parts simultaneously: In this scenario, the 

effectiveness of the chaos functions is checked in 
both stages. Therefore, both chaos functions are 
replaced simultaneously instead of random selec-
tions of the standard mode.

4.2 Standard Big Bang-Big Crunch (BB-BC) algorithm
Inspired by the energy dissipation in the transformation 
from an orderly state to a chaotic state, a meta-heuristic 
algorithm based on physics has been presented by Erol 
and Eksin  [9]. This algorithm uses two theories related 
to the evolution of the universe, including the Big Bang 
and the Big Crunch (BB-BC), and is also known by this 
name. In this theory, the Big Bang stage is proposed as the 
model of the beginning of the world and the Big Crunch as 
a model for its continuation and end. Therefore, the algo-
rithm consists of two main phases. In the Big Bang phase, 
due to the abundance of energy, the particles are distrib-
uted in all areas of space, but in the next phase, that is, 
the Big Crunch phase, the dispersed particles converge to 
a point based on a specific order and instructions. In this 
algorithm, like other population-based algorithms, first, 
points are randomly selected in scattered parts of the deci-
sion space. This step is responsible for exploration for the 
algorithm. But in the big Crunch stage, by moving towards 
local optima, the results are compressed in one point. 
Therefore, after successive repetitions, the space used in 
the Big Bang converges towards the points resulting from 
the Big Crunch stage. This step plays the role of exploita-
tion for the algorithm.

4.2.1 Basic steps in Big Bang-Big Crunch algorithm
Step 1 selection of algorithm parameters: Algorithm 
parameters include the number of initial particles nP, the 
maximum number of function evaluation of NFEs, as a 
stopping criterion, the selection of coefficients α and β to 
determine the percentage of participation of the center of 
mass and the best particle and calculation steps based on 
the relation proposed by Camp.

Step 2 Formation of the initial population: The initial 
population of particles is formed by considering the upper 
and lower bounds of the decision variables. Its formation 
method will be according to Eq. (17):

P i P rand nv P P

i nP j nV
j j LB j UB j LB
0 1

1 2 1 2
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, , ,,

, , , , , , ,
	 (17)

Step 3 Sorting the answers and choosing the best particle: 
By evaluating the objective function, the results are sorted 
and the lowest one is introduced as the best particle bestP.
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Step 4 By updating the number of iterations, the center 
of mass of the particles is determined based on the phase 
of the big bang. The position of the center of mass of the 
particles is according to Eq. (18):

CM i

P j i
PFit j

PFit j

ij

nP

j
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1

1
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Step 5 Determining the new position of each particle: 
The new position is determined based on the modified Kemp's 
formula and according to the big crunch phase. Its compo-
nents include the center of mass and the best weight, each of 
which contributes a certain weight. The details of determin-
ing the new position are given in Eq. (19):

new bestP i CM P

rand P P
nIT

i nP

UB LB
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�
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�

1

1

,

, , .
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Step 6 the new position of the particles is evaluated and 
then sorted. By determining the best particle in this iter-
ation, the position of the best particle and the number of 
iterations are updated.

Step 7 the termination conditions are checked and if 
necessary, the steps from the fourth step are repeated. 
Otherwise, the operation is terminated.

4.2.2 Chaos-embedded Big Bang-Big Crunch (CBB-BC) 
algorithm
This algorithm consists of two important strategies, big 
bang and big crunch, which play the role of exploration 
and exploitation in the algorithm. By replacing the chaos 
maps instead of the random selections of these two steps, 
there will be a significant improvement in the optimiza-
tion results. This replacement is done with the following 
suggested scenarios:

•	 Scenario 1 Embedding the chaos map in the big 
bang stage: in this case, the first chaos map CHM1 
replaces the random selection of the algorithm. 
By embedding this map in Eq. (17), the results will 
be according to Eq. (20):

P i P CHM P P

i nP j nV
j j LB j UB j LB
0 1

1 2 1 2
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� � � �

, , , ,

, , , , , , , .
	 (20)

•	 Scenario 2 Embedding the chaos function in the 
big crunch stage: in this case, the second chaos 
map CHM2 replaces the random selection of the 

algorithm. By embedding this map in Eq.  (19), the 
results will be according to Eq. (21):

new bestP i CM P

CHM P P
nIT

i nP

UB LB
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�
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•	 Scenario 3 Embedding the chaos maps in both stages 
simultaneously: in this case, both chaos maps simul-
taneously replace the random choices of the algo-
rithm in Eqs. (29) and (30).

4.3 Standard Tug of War Optimization (TWO)
Inspired by the game of tug-of-war between compet-
ing teams in a league, an emerging meta-heuristic algo-
rithm has been presented by Kaveh and Zolghadr  [10]. 
In each stage of the game of tug-of-war, two competing 
teams are pulling the rope, the light team loses the com-
petition and moves to the heavy team. In the competition 
between teams, the best team has the most weight and the 
worst team has the least weight. This algorithm is popula-
tion-based and like other population-based algorithms, the 
initial answers are randomly selected. These answers are 
selected as starting teams from the bound of the decision 
space, and each solution is considered as a team. The total 
number of competing teams in each period is introduced 
as the league of the same period. In each iteration of the 
algorithm, the teams of each level are evaluated based on 
the merit function. In the following, the basic steps of the 
algorithm are presented in standard mode.

4.3.1 Basic steps in Tug of War Optimization
Step 1 Selecting the initial components of the algorithm: 
The initial components include two choices as follows: 

•	 Introducing the number of teams attending in the com-
petition. This component is displayed with nT icon. 

•	 Introducing the number of members assigned to each 
team with T icon. This component is known as the 
league model series.

In each step, the objective function and penalized objec-
tive function values are evaluated simultaneously.

Step 2 Estimating each team's score: Each team from 
the league participating in the tug-of-war competition 
has a certain weight, which we can estimate based on the 
Eq. (22):

W
PFit PFit
PFit PFiti
i�
� � �

� � � � �
�

min

min max
1 .	 (22)
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The components used in this regard include the maximum 
and minimum value of the penalized objective function along 
with the value of the penalized objective function itself. 
The range for this relationship is between 1 and 2, where the 
numerical value of 2 belongs to the best and heaviest team.

Step 3 Competing between teams: Each team in the 
league competes with all other teams. To move to its new 
position in each period of repetition, the tensile force 
applied by each team is proportional to the frictional force 
at rest. In the game of tug-of-war, there is always a com-
petition between two teams who continue to pull the rope 
on both sides, and here it is meant by two values that result 
from the scores of the two teams. In the modeling, the 
value of the coefficient of friction is assumed to be one, 
and the pulling force between the two teams i and j can be 
the maximum of the following two values, respectively:

F W Wp ij i s j s, max ,� � �� � .	 (23)

Therefore, the strength of team i in the face of heavier 
team j can be as follows:

F F Wr ij p ij i k, ,� � � .	 (24)

In order to determine the acceleration for the move-
ment of team i towards team j, the following relationship 
is proposed:

a
F
W

g g T Tij
r ij

i k
ij ij j i� � �, ,

�
	 (25)

In the presented relationship, the acceleration of gravity 
plays an important role, which one can access by deter-
mining the difference for the position of the two teams. 
To determine the amount of displacement in each step, the 
following relationship is used:

stepsizeij ija T Lb Ub randn� � �� ��
1

2

2� �� .	 (26)

In the second part of the relation of step-size, the ran-
dom components of the league teams have been applied. 
In each period of the game, team i will pass a part of the 
decision space before being stopped by team j. In order to 
make this interval, one can use the coefficient of possi-
ble α effects. This coefficient is in the range of [0.9, 0.99] 
and large values for this coefficient at the beginning stage 
create the opportunity to search the decision space. In the 
final stages, by reducing the numerical value of this coeffi-
cient and choosing smaller steps, the convergence towards 
the optimum increases. Also, β is chosen as the scaling 
factor and its changes are in the range of [0, 1]. The scaling 

factor is to control the steps of post-suggestion responses. 
In cases where we the search step is needed more accu-
rately; this parameter is introduced with smaller steps. 
To select the allowed range to determine the step length, 
we use the difference between the upper bound and the 
lower bound of the variables in the search space. In this 
research, a standard normal random distribution has been 
proposed, which can create diversity in the search space 
by multiplying member by member. If in some cases j is 
lighter than i, the displacement is not done and its value 
is assumed to be zero. In the original version, time steps 
have been applied as 1. At the end of each stage of the peri-
odic game, the total number of places changed for Team i 
is determined according to the following relationship:

stepsize stepsizei ij
j

nT

i j� �
�
�
1

, .	 (27)

To determine the new position for a team, the following 
step-size length is added to its previous position.

T Ti i i
new stepsize� � 	 (28)

Step 4 Replacing the improved results: With the com-
petition between the league teams, the new results are 
compared with the existing results, and if the results are 
improved, the position of the league teams is updated.

Step 5 Controlling the range of the decision space: by 
applying step-size to the initial position, in some cases the 
variables go out of the determined ranges. Using the fol-
lowing relationship, these intervals are modified.

T T randn
NIT

T Tij j
s

j ij� � �

�
�

�

�
� �� �best best 	 (29)

In the relation proposed by bestT, the result is the best 
team so far and the NITs counter is related to the repetition.

Step 6 The conditions for the final stage of the games 
will be checked and if necessary, the competition between 
the teams will be repeated again.

4.3.2 Chaos-embedded Tug of War Optimization 
(CTWO)
Like meta-heuristic algorithms, two important strategies 
of exploration and exploitation are considered in this algo-
rithm. These two strategies are in β scaling factor and apply-
ing restrictions in the space of decision variables. By embed-
ding chaos functions in the random selection parts of the 
algorithm in the standard mode, a significant improvement 
will be achieved in the results of the algorithm. The  three 
suggested scenarios for this installation are as follows:
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•	 Scenario 1 Embedding the chaos function in the 
exploration strategy: In this step, the first chaos func-
tion CHM1 replaces the β scaling factor in Eq. (26). 
Equation (30) for the chaotic state is as follows:

stepsizeij ija T

CHM Lb Ub randn

�

� � � �� ��

1

2

1

2�

� .

	 (30)

•	 Scenario 2 Embedding the chaos function in the 
exploitation strategy: In this step, the second chaos 
function CHM2 replaces the coefficient of the deci-
sion space limitation in Eq.  (29). Equation  (31) for 
the chaotic state is as follows:

T T CHM
NIT

T Tij j
s

j ij� � �

�
�

�

�
� �� �best best
2 .	 (31)

•	 Scenario 3 Embedding chaos functions simultane-
ously in the stages of exploration and exploitation: 
In this step, both chaos functions are simultaneously 
replaced in Eqs. (26), (29).

Chaotic algorithms can be developed for Topologies 
optimization in the case of probabilistic loading [28, 29], 
Reliability based topology optimization of thermo-elastic 
structures  [30], and elasto-plastic limit analysis  [31, 32]. 
In these cases, the design with the limit of the minimum 
penalized weight is practical.

5 Numerical examples of optimal truss design
Each of the introduced meta-heuristic algorithms deal 
with optimization with different physical inspirations. 
Embedding chaos functions in these algorithms and form-
ing triple scenarios can make a significant improvement in 
the optimization of truss structures. Each chaos function 
can solve the weakness related to exploration, exploitation 
or both simultaneously in the decision space. Therefore, 
at least two types of chaos functions should be considered 
for embedding in algorithms. Considering the formation of 
chaotic mutations in meta-heuristic algorithms, in any case, 
a significant improvement in the results is obtained. In order 
to expand the scope of investigations, 3 standard modes of 
meta-heuristic algorithms are compared with 18  chaotic 
modes. This wide diversity provides a challenge and intense 
competition to move towards overall optimality. Therefore, 
the possibility of access to optimal answers with high accu-
racy increases. By comparing these models, the best algo-
rithm, the best chaotic function and the best scenario are 

selected. Although in the optimal design of truss structures, 
the main goal is to choose the lowest possible value for the 
cross-sectional area of the members, but at the same time, 
the limits related to the permissible stress, the permissible 
deformation of the nodes and the slenderness of the mem-
bers must be satisfied according to the regulations. In the 
following well-known examples are examined.

5.1 A 47-bar power transmission tower
Power transmission tower with truss system is selected 
according to Fig.  3. Its geometric structure consists of 
47 members and 22 nodes. The numbering of the nodes is 
presented in Fig. 3. In this structure, the specific weight of 
structural materials is 0.3 lb/in3 and the modulus of elastic-
ity of the members is 30,000 ksi. Both stress and buckling 
limits must be satisfied for all members. The  allowable 

Fig. 3 Schematic of a 47-bar power transmission tower
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stress is set at 20 ksi in tension and 15 ksi in compression. 
The allowable compressive stress for Eulerian buckling is 
according to the following Eq. (32):

� i
e i

i

KEA
L

i�
�

� �
2

1 2 47; , , , .	 (32)

In this relationship, K includes a constant coefficient 
that is selected according to the geometrical shape of the 
cross-section profile. Also, E is the modulus of elasticity, 
Ai is the cross-sectional area value, and Li is the length of 
the member. In the recent research, the value of K is 3.96. 
The number of loading combinations has been selected 
in three groups. The loads of the first group are entered 
with an intensity of 6  kP along the positive X-axis with 
14 kP along the negative Y-axis and at nodes 17 and 22. 
The  loads of the second group with an intensity of 6 kP 
along the positive X-axis with 14  kP along the negative 
axis of Y are entered only at node 17.

The loads of the third group with an intensity of 6 kP 
along the positive X-axis with 14  kP along the negative 
axis of Y are entered only at node 22. In the first group, 
diagonal loads related to both power transmission lines are 
applied in the normal state, but in the second and third 
groups, it considers the cases where one of the two lines 
is broken. The structure has geometric symmetry and the 
members of the structure are classified into 27  groups. 
AISC codes are used to design the cross-section of the 
members by 64 discrete values. By performing 20  inde-
pendent evaluations, statistical samples were modeled 
and the results are displayed in statistical Table 1. In these 
models, the results of the best weight, the best average and 

the coefficient of variation are presented. Comparison of 
optimization details in standard and chaotic mode is done 
in Table 2. In Table 2, the most optimal of the three scenar-
ios for the chaotic state is presented.

In order to summarize the results and quick access, bar 
graphs are shown in Fig. 4. Embedding chaos functions in 
algorithms has caused a significant improvement in reduc-
ing the weight of the structure. In the following, we intro-
duce each of the chaos functions and similar scenarios 
with the best optimization results:

•	 For optimization with Chaotic Thermal Exchange 
Optimization (CTEO), the Logistic chaos map with 
the first scenario has the most optimal weight with 
the value of 2328.8298 pounds.

•	 For optimization with Chaotic Big Bang-Big Crunch 
(CBB-BC), the Gaussian chaos map with the second 
scenario has the most optimal weight with the value 
of 2313.9752 pounds.

•	 For optimization with Chaotic Tug-of-War 
Optimization (CTWO), the Gaussian chaos map 
with the third scenario has the most optimal weight 
with the value of 2314.5396 pounds. 

The results of these investigations are presented in 
Table  2. By comparing all the Chaotic Algorithms and 
Scenarios, the meta-heuristic Chaotic Big Bang-Big Crunch 
(CBB-BC), with Gaussian chaos map and the second sce-
nario and the optimal weight of 2313.970 pounds has the 
most optimal result. For convenience and quick access, the 
graph of the convergence history of the algorithms for the 
standard and chaotic mode is presented in Fig. 5.

Table 1 Statistical results of the 47-bar power transmission tower

Algorithms Statistical 
Information

TEO  
Standard

CTEO-21 
Logist-1

CTEO-22 
Logist-2

CTEO-23 
Logist-3

CTEO-31 
Gauss-1

CTEO-32 
Gauss-2

CTEO-33 
Gauss-3

1-TEO

Best 2395.3630 2328.8298 2391.1050 2386.9676 2355.9526 2357.1052 2349.0212

Mean 2423.4305 2364.7342 2423.2361 2412.5609 2415.0340 2372.2855 2384.5812

C.V(%) 1.2528 1.8153 1.2928 0.7157 1.9300 0.60191 1.7411

Algorithms Statistical 
Information

BB-BC 
Standard

CBB-BC-21 
Logist-1

CBB-BC-22 
Logist-2

CBB-BC-23 
Logist-3

CBB-BC-31 
Gauss-1

CBB-BC-32 
Gauss-2

CBB-BC-33 
Gauss-3

2-BB-BC

Best 2363.1164 2321.7473 2326.8120 2342.8048 2318.2260 2313.9752 2335.3663

Mean 2379.8142 2382.4864 2381.8078 2400.5620 2336.0767 2332.9950 2389.4763

C.V(%) 0.9005 2.7106 1.7578 1.9148 0.80995 0.77935 2.0574

Algorithms Statistical 
Information

TWO 
Standard

CTWO-21 
Logist-1

CTWO-22 
Logist-2

CTEWO-23 
Logist-3

CTWO-31 
Gauss-1

CTWO-32 
Gauss-2

CTWO-33 
Gauss-3

3-TWO

Best 2392.1796 2317.0418 2319.2046 2330.1925 2316.3392 2318.1133 2314.5396

Mean 2400.7506 2349.3671 2361.6789 2339.9130 2337.0366 2336.8646 2346.0129

C.V(%) 0.29636 0.94111 2.0276 0.45009 0.99221 0.73604 1.1082
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Table 2 Optimal design comparison for the 47-bar power transmission tower

Number group Element group TEO Stand CTEO Logis-1 BB-BC Stand CBB-BC Gaus-2 TWO Stand CTWO Gaus-3

1 A1-A3 3.763 3.7605 3.799 3.7785 3.8081 3.7728

2 A2-A4 3.3323 3.3221 3.3785 3.3634 3.3625 3.3635

3 A5-A6 0.84608 0.78404 0.77638 0.76238 0.75403 0.76149

4 A7 1.2523 0.64742 0.11672 0.10145 0.24984 0.16657

5 A8-A9 0.8929 0.84296 0.79343 0.78248 0.83455 0.77622

6 A10 1.9818 1.948 1.9409 1.8336 2.1999 2.9112

7 A11-A12 2.113 2.0899 2.1105 2.0922 2.1053 2.1228

8 A13-A14 1.2655 1.1656 1.237 1.1705 1.2617 1.2034

9 A15-A16 1.589 1.5625 1.5322 1.5526 1.5751 1.52

10 A17-A18 2.2775 2.107 2.0994 2.0886 2.1159 2.0882

11 A19-A20 0.11446 0.10234 0.17467 0.10149 0.11779 0.10034

12 A21-A22 0.34357 1.0034 0.10098 0.1 1.4884 0.59216

13 A23-A24 1.6983 1.7258 1.7229 1.7101 1.7406 1.7097

14 A25-A26 1.7289 1.7076 2.3211 1.7111 1.7179 1.7059

15 A27 1.7633 1.8404 1.3938 1.5844 1.7746 1.6496

16 A28 1.5352 1.3617 0.53918 0.45629 2.0948 0.96308

17 A29-A30 3.6587 3.6588 3.6339 3.5906 3.6682 3.6285

18 A31-A32 1.4112 1.3952 1.461 1.4423 1.3908 1.4211

19 A33 0.21953 0.18927 0.2541 0.27757 0.18351 0.27472

20 A34-A35 3.0104 3.0265 3.0276 3.0249 3.0302 2.9931

21 A36-A37 1.2653 1.2382 1.2272 1.2437 1.2333 1.2779

22 A38 0.28865 0.30927 0.43333 0.30288 0.27483 0.25192

23 A39-A40 3.6707 3.4876 3.693 3.674 3.5788 3.4562

24 A41-A42 1.5246 1.5265 1.5193 1.5277 1.5552 1.5186

25 A43 0.10032 0.10288 0.1 0.1054 0.27612 0.10041

26 A44-A45 4.504 4.0988 4.5456 4.3849 4.3196 4.0756

27 A46-A47 1.4369 1.4275 1.4367 1.4251 1.5 1.4306

Best Weight (lb) 2395.36 2328.82 2363.11 2313.97 2392.17 2314.53

Mean Weight (lb) 2423.43 2364.73 2379.81 2332.99 2400.75 2346.01

Coefficient Var (CV) 1.2528 1.8153 0.9005 0.77935 0.29636  1.1082

NFE 12000 12000 12000 12000 12000 12000

Fig. 4 Optimization results in standard mode and selection of chaos map for the 47-bar power transmission tower
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5.2 A 120-bar dome shaped truss
The dome-shaped truss with 120  members is selected 
according to Fig. 6. According to the geometrical symme-
try of the structure, the members are classified into seven 
groups. To determine the allowable tensile and compres-
sive stresses, it is done according to the AISC ASD code. 
All nodes of the dome, except the support nodes, are loaded 
by gravity. The intensity of the incoming load in node 1 is 
−13.49 kips, in nodes 2 to 14 it is −6.744 kips and in other 
nodes −2.248  kips. In order to control the deformation 
of nodes, a limit of 0.1969 in is suggested for all exten-
sions. The lower bound and upper bound for the design of 
the cross-sectional area of the members are 0.775 in2 and 

20 in2, respectively. Equation (33) is proposed to calculate 
the allowable stress in tension and compression. 

�
�

� �i
y i

i i

F
�

�
�

�
�
�

�

0 6 0

0

. for

for
	 (33)

For compressive stresses, the following Eq.  (34) can 
be used
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In this equation we have the Eq. (35):
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In this relation, E expressing the modulus of elastic-
ity, Fy is the yield stress of the steel, C is the amount of 
slenderness, which separates to the elastic or inelastic 
buckling region, compared to the existing slandering λ, 
and also k is the effective length coefficient, l and r is the 
radius of rotation of the limb. The minimum and max-
imum cross-sectional area of all members is 0.775  in2 
and 20  in2 respectively. By performing 20  independent 
evaluations, statistical samples were modeled and the 
results are displayed in statistical Table 3. In these mod-
els, the results of the best weight, the best average and 
the coefficient of variation are presented. Comparison 
of optimization details in standard and chaotic mode is 
done in Table 4. In Table 4, the most optimal of the three 
scenarios for the chaotic state is presented. In order to 

Fig. 5 The convergence histories for the 47-bar power transmission tower

Fig. 6 Schematic of a 120-bar dome shaped truss
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summarize the results and quick access, bar graphs are 
shown in Fig.  7. Embedding chaos functions in algo-
rithms has caused a significant improvement in reducing 

the weight of the structure. In the following, each of the 
chaos functions is introduced and similar scenarios with 
the best optimization results:

Table 3 Statistical results for the 120-bar dome shaped truss

Algorithms Statistical 
Information

TEO  
Standard

CTEO-21 
Logist-1

CTEO-22 
Logist-2

CTEO-23 
Logist-3

CTEO-31 
Gauss-1

CTEO-32 
Gauss-2

CTEO-33 
Gauss-3

1-TEO

Best 33256.2451 33214.9629 33212.9148 33126.4708 33137.2136 33098.8560 33086.7020

Mean 33264.5395 33246.0068 33240.8490 33149.9988 33189.3005 33147.8790 33136.4610

C.V(%) 0.016597 0.088786 0.06405 0.068182 0.092985 0.09734 0.08869

Algorithms Statistical 
Information

BB-BC 
Standard

CBB-BC-21 
Logist-1

CBB-BC-22 
Logist-2

CBB-BC-23 
Logist-3

CBB-BC-31 
Gauss-1

CBB-BC-32 
Gauss-2

CBB-BC-33 
Gauss-3

2-BB-BC

Best 33241.8290 33083.2930 33057.6510 33128.9340 33177.9380 33152.6095 33133.9880

Mean 33252.237 33121.750 33081.0974 33161.587 33211.0454 33195.5537 33164.132

C.V(%) 0.036207 0.12069 0.06264 0.09124 0.056916 0.095251 0.079824

Algorithms Statistical 
Information

TWO 
Standard

CTWO-21 
Logist-1

CTWO-22 
Logist-2

CTEWO-23 
Logist-3

CTWO-31 
Gauss-1

CTWO-32 
Gauss-2

CTWO-33 
Gauss-3

3-TWO

Best 33235.303 33159.561 33144.504 33114.604 33093.011 33128.753 33065.343

Mean 33261.579 33178.461 33180.142 33150.603 33122.219 33186.700 33125.499

C.V(%) 0.074489 0.047542 0.07333 0.10716 0.05806 0.10769 0.12704

Table 4 Optimal design comparison for the 120-bar dome shaped truss

Number group TEO Stand CTEO Gaus-3 BB-BC Stand CBB-BC Logis -2 TWO Stand CTWO Gaus-3

1 3.02544 3.0246 3.02277 3.02699 3.02596 3.02377

2 14.6042 14.5465 14.9875 14.9501 14.7717 15.0837

3 5.10704 5.21025 4.89262 5.22663 5.07626 5.10404

4 3.13438 2.94134 3.11807 2.87259 3.10532 2.90719

5 8.47955 8.61269 8.52708 8.50858 8.39326 8.48781

6 3.40848 3.39464 3.3282 3.32841 3.48949 3.34531

7 2.49458 2.49612 2.50013 2.50298 2.49375 2.4979

Best Weight (lb) 33256.245 33086.702 33241.829 33057.651 33235.303 33065.343

Mean Weight (lb) 33264.539 33136.461 33252.237 33081.097 33261.579 33125.499

Coefficient Var (CV) 0.016597 0.08869 0.036207 0.06264 0.074489 0.12704

NFE 12000 12000 12000 12000 12000 12000

Fig. 7 Optimization results in standard mode and chaos map for the 120-bar dome shaped truss
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•	 For optimization with Chaotic Thermal Exchange 
Optimization (CTEO), the Gaussian chaos map with 
the third scenario has the most optimal weight with 
the value of 33086.7020 pounds.

•	 For optimization with Chaotic Big Bang-Big Crunch 
(CBB-BC), the Logistic chaos map with the second 
scenario has the most optimal weight with the value 
of 33057.6510 pounds.

•	 For optimization with Chaotic Tug-of-War 
Optimization (CTWO), the Gaussian chaos map 
with the third scenario has the most optimal weight 
with the value of 33065.3430 pounds. 

The results of these investigations are presented 
in Table 4. By comparing all the Chaotic Algorithms and 
Scenarios, the meta-heuristic Chaotic Big Bang-Big Crunch 
(CBB-BC), with Logistic chaos map and the second sce-
nario and the optimal weight of 33057.6510 pounds has the 
most optimal result. For convenience and quick access, the 
graph of the convergence history of the algorithms for the 
standard and chaotic mode is presented in Fig. 8.

6 Discussion of the algorithms
Meta-heuristic algorithms inspired by physical laws are 
more successful compared to other algorithms. The rela-
tionships governing physical phenomena are easily mod-
eled and used in meta-heuristic algorithms. To derive the 
final results regarding the success of chaotic algorithms, 
the processes related to Tables  1–4 should be first com-
bined and then normalized  [22,  23]. In order to derive 
final results about the success of chaos algorithms, the 

processes from Tables 1–4 are combined and then normal-
ized. Equation (36) is intended to combine and summarize 
information about the contribution of all problems.
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In this regard, the standard mode has been compared 
with six chaotic modes. In order to increase the range of 
reviews and access to more accuracy, the percentage of 
success has been done with the participation of all exam-
ples. The components used include the optimal values of 
Tables 1–4 by ValMV, the combined values of the results by 
Valcom

MV , the number of examined samples by S, and also 
the lowest numerical value in the evaluation of each com-
ponent by Vali,min applied [24]. For ease of interpretation 
of the results in Eq. (37), we have benefited from inverted 
and normalized values. Therefore, optimal modes belong 
to chaos functions and scenarios that have achieved a high 
percentage of success.
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In Table  5, the percentage of success of each of the 
algorithms in the standard mode and six chaotic modes 
has been analyzed. By examining Table 5, we can intro-
duce the best chaos function and the best scenario for 
each meta-heuristic algorithm. Also, by comparing the 
percentage of success of chaotic modes with the standard 
initial mode, determine the amount of improvement in 

Fig. 8 The convergence histories for the 120-bar spatial dome
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the optimization results. Next, in order to quickly access 
the process of improving the results in chaotic situations, 
a circular diagram of the Table 5's components is formed. 
These components include the best weight, the best aver-
age and the best coefficient of variation.

6.1 Results of optimal design for best weight
According to the combination of the results with the 
participation of all the examples, the optimal design 
for determining the best weight in the Chaotic Thermal 
Exchange Optimization (CTEO), belonging to the 
Gaussian chaos map with the third scenario has been suc-
cessful with a value of 31.915%, the algorithm based on 
Chaotic Big Bang-Big Crunch (CBB-BC), belonging to 
the Gaussian chaos function with the second scenario has 
been successful with a value of 50.552%, and finally, the 
Chaotic Tug-of-War Optimization (CTWO), belongs to 
the Gaussian chaos function with the third scenario has 
been successful with a value of 55.846%. The final results 
of the optimal design for introducing the best weight are 
displayed in Fig. 9.

6.2 Results of optimal design for best mean
According to the combination of the results with the 
participation of all the examples, the optimal design 
for determining the best mean in the Chaotic Thermal 
Exchange Optimization (CTEO), Chaotic Big Bang-Big 
Crunch (CBB-BC) and Chaotic Tug-of-War Optimization 
(CTWO), for all three belongs to the Gaussian chaos func-
tion with the second scenario and has been successful with 
a value of 57.536%, 58.705%, and 49.939% respectively. 
The final results of the optimal design to introduce the best 
average is displayed in Fig. 10.

6.3 Results of optimal design for best coefficient of 
variation
According to the combination of the results with the par-
ticipation of all the examples, the optimal design for deter-
mining the best coefficient of variation in the Chaotic 
Thermal Exchange Optimization (CTEO), belonging to 
the Logistic chaos map with the third scenario has been 
successful with a value of 32.779%, the algorithm based 
on Chaotic Big Bang-Big Crunch (CBB-BC), belonging 

Table 5 Final normalized value with the participation of all examples

Category Algorithms Standard Logistic 21 Logistic 22 Logistic 23 Gauss 31 Gauss 32 Gauss 33

Best 
Weight

TEO 5.429 18.0592 6.2804 6.8034 12.7355 18.7772 31.9154

BB-BC 3.4588 9.5358 8.601 5.5069 10.5997 50.5523 11.7455

TWO 1.5213 6.6924 4.1453 3.5091 12.7274 15.5581 55.8462

Mean 
Weight

TEO 3.5408 7.5698 5.1582 6.7163 3.5288 57.5362 15.95

BB-BC 4.689 3.9614 5.2293 4.0269 16.4002 58.7054 6.9877

TWO 2.1453 10.3675 2.7191 3.6907 23.7779 49.9395 7.36

(CV %)

TEO 9.6752 7.206 14.9836 32.7795 6.2171 18.2795 10.8592

BB-BC 25.2467 1.7971 4.0327 3.9469 50.6501 10.3931 3.9334

TWO 9.5916 59.9434 2.1418 3.042 11.266 12.0488 1.9663

Fig. 9 The final results of the optimal design to determine the best weight
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to the Gaussian chaos function with the first scenario has 
been successful with a value of 50.650%, and finally, the 
Chaotic Tug-of-War Optimization (CTWO), belongs to the 
Logistic chaos function with the second scenario has been 
successful with a value of 55.846%. The final results of the 
optimal design to introduce the best the coefficient of vari-
ation is shown in Fig. 11.

7 Conclusions
In this research, the chaos functions in three well-known 
algorithms have been inspired by the physical laws of 
embedding and significant results have been obtained 
regarding the improvement of the optimization conditions. 
The main results are as follows:

•	 Physically inspired meta-heuristic algorithms are 
more successful. Classical conditions for physical 
relations make their use as sources of inspiration in 
meta-heuristic algorithms easy and have better results.

•	 The selected algorithms include three well-known 
physically inspired algorithms, which will have the 
best optimization results for non-linear and non-con-
vex problems, but face early convergence in prob-
lems with a large number of decision variables.

•	 Chaotic functions create the necessary conditions to 
escape from the local optima trap by making sud-
den jumps.

•	 The embedding of chaos functions is done with three 
scenarios, in scenarios 1 and 2, chaos functions have 

Fig. 10 The final results of the optimal design to determine the best mean

Fig. 11 The final results of the optimal design to determine the best coefficient of variation
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replaced the exploration and exploitation steps, 
respectively. But in the third scenario, these func-
tions simultaneously replace both stages. Therefore, 
based on this, the algorithms can be classified into 
three categories.

•	 In chaos functions, the first term plays a decisive role 
in the structure of the chaos series. Therefore, per-
forming several initial repetitions before the main 

repetitions to find the best starting sentence will play 
a significant role in improving the results.

•	 Finally, it is interesting to mention that the force 
method of structural analysis can be employed 
in place of the displacement method with consid-
erable benefits for frame structures with smaller 
degrees of indeterminacy than the kinematical 
indeterminacy [31, 32].
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