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Abstract

In the construction industry, material handling plays an important role. Finding proper locations for construction facilities not only 

can affect the expenses, but also it can impact on the process of handling of construction materials. Therefore, in order to supply 

engineering demands and materials, the construction site layout planning problem (CSLP) within a short-distance transportation is 

considered as an NP-hard problem. Thus, the researchers are extensively using metaheuristics in order to solve the construction site 

layout planning problems. This study presents a comparative study of ten physics-inspired metaheuristics with regard to their efficacy 

in how they can address a real construction site layout problem. In this vein, two case studies are examined in terms of the site layout 

planning. Finally, the findings reveal that Gravitational Search Algorithm (GSA) and Thermal Exchange Optimization (TEO) have the 

ability to come up with better solutions, in comparison to other considered optimization algorithms.
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1 Introduction
In the past few decades, many studies have been con-
ducted so that to figure out the best way of approaching 
unsolved problems of construction site layout planning is 
an indispensable part of any given project going on. The 
location of the different facilities can play a vital role in the 
performance of site precast yards, in other words, in opti-
mizing the layout of the construction site precast yard [1]. 
As a result of this, so as to solve the problems related to the 
site layout; many high-level procedures like metaheuris-
tics have been enormously put into action [2]. Therefore, 
a well-designed site layout of construction can clearly ele-
vate the efficiency of production. In this regard, the major-
ity of building companies are highly motivated to enjoy 
having an excellent management and organization so that 
they can be able to keep up with the global competitive 
market, to guarantee their productivity, and increase their 
net income [3]. When it comes to the Construction Site 
Layout Problems (CSLPs) both providing materials and 
engineering requirements within a short-distance trans-
portation are very attractive fields of research, mostly 
because these fields of study have the potential to combine 
qualities of both the aesthetic and the functional aspects of 
layout within the process of planning the facility [4]. 

Material handling, which involves some short-distance 
movements, plays an crucial role in the construction and 
manufacturing activities [5]. The expenses and the time of 
the construction in the material handling system will be 
extremely affected if the location of facilities be located 
suitably in the site. According to the research which has 
been done by Tompkins et al. [6], in most companies, 
material handling takes a large portion of the total budget 
between 20 to 50 percent. Moreover, having properly-po-
sitioned facilities can considerably cut these costs around 
10–30% at the minimum [6]. It is worth bringing in mind 
that 36% of the increasing costs in material handling can 
be just the results of having an ineffective-layout [7].

The construction site layout planning (CSLP), as  an 
important problem, which is known as a Quadratic Assign-
ment Problem (QAP), and is an NP-hard Problem  [8]. 
This problem is associated with the movement of materi-
als between facilities. Having ample construction space is 
a necessity for any construction project, for it needed for 
a range of short-term facilities; well-functioning, and safe, 
construction movements. One of the main steps in plan-
ning the site is construction site-level facilities layout [5]. 
Organizing a set of work space in the construction site that 
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can provide a level of safety and efficiency is not a simple 
task, but rather a multifaceted job to do, because it inevi-
tably involves a lot of scenarios that should be taken into 
consideration.

 In the last few years, researchers have constantly been try-
ing to tackle the problem of construction site layout through 
applying metaheuristic algorithms. In this regard, it is worth 
mentioning that there are a plethora of metaheuristic algo-
rithms that can solve the construction site layout problem; 
therefore, this article set out with the aim of comparing the 
performance of physics-inspired optimization algorithms 
in terms of optimizing the construction site layout prob-
lem. These algorithms include: Big Bang-Big Crunch (BB-
BC)  [9], Ray Optimization Algorithm (RO)  [10], Water 
Evaporation Optimization (WEO) [11], Thermal Exchange 
Optimization (TEO) [12], Gravitational Search Algorithm 
(GSA) [13], Electromagnetism-like Mechanism (EM) [14], 
Central Force Optimization (CFO)  [15], Galactic Swarm 
Optimization (GSO) [16], Quantum-inspired genetic algo-
rithm (QGA)  [17], Electromagnetic Field Optimization 
(EFO) [18]. Since the performance of ten physics-inspired 
metaheuristics in solving a real construction site layout 
problem is compared in this study, which is a large number 
of algorithms to consider for such a comparison, this study 
is unique in several aspects. Most of the previous studies 
have focused on a few algorithms or a single algorithm with 
different variants. It applies these algorithms to the linear 
construction site layout planning problem, which is a spe-
cial case of the quadratic assignment problem that assumes 
linear costs associated with the flow between facilities. 
This assumption may be more realistic for some construc-
tion projects and may reduce the complexity of the prob-
lem. It contributes to the body of existing knowledge by 
providing an overview of ten physics-inspired metaheuris-
tic algorithms, which are algorithms inspired by non-lin-
ear physical phenomena such as gravity, electromagnetism, 
thermodynamics, etc. These algorithms have shown for-
midable exploration and exploitation abilities for optimi-
zation problems. It also evaluates the effectiveness and 
efficiency of these algorithms on a set of real-world case 
studies, and analyzes the strengths and weaknesses of each 
algorithm. It may provide useful insights and guidelines for 
practitioners and researchers who are interested in solving 
the construction site layout planning problem using meta-
heuristic algorithms.

The rest of the article is organized as follows: The lit-
erature review is presented in Section 2. Section 3 pres-
ents the optimization algorithms, and Section 4 presents 

formulations and modeling of the CSLP. Final discussion, 
Concluding remarks, and future directions are presented 
in Section 5.

2 Literature review
In this section, a literature review of the Metaheuristic 
Algorithms and Construction Site Layout Problem will be 
presented.

2.1 Metaheuristic algorithms
In the last decade, metaheuristic algorithms have gained 
popularity among researchers in order to find out better 
solutions for problems that we are facing almost every sin-
gle day in our life. As a result of this, a variety of meta-
heuristics – with various attitudes and aspects – are devel-
oped, and at the same time they are utilized in virtually 
all fields. Also, advanced metaheuristic and evolutionary 
algorithms have been significantly used in solving several 
complex construction engineering problems such as: reli-
ability assessment of reinforced concrete beams under ele-
vated temperatures [19], optimizing the size and shape of 
trusses [20, 21], reliability based topology optimization of 
thermoelastic structures [22], estimating the optimal mix-
ture design of concrete pavements [23], reliability-based 
numerical analysis of glulam beams [24], optimizing fly 
ash concrete mixtures [25], and etc. Exploring efficiency is 
one of the main goals of these optimization methods, which 
can eventually lead to a global solution. These algorithms 
are neither problem-specific nor dependent on the objec-
tive function, so both industry and academic community are 
enormously paying attention to this field of knowledge [26].

Having some unique features, such as efficiency and clarity 
for analyzing natural phenomena, it has brought about some 
well-known algorithms such as Genetic Algo-rithms [27], 
according to Darwin's theory of survival of the fittest and 
Ant Colony Optimization [28] in 1999 based on the behav-
ior of ants. Narayanan and Moore [17] proposed Quantum-
Inspired Genetic Algorithm (QGA) in  1995. This can be 
seen the advent of the optimization algorithms inspired by 
physics. In this line of thought, that is, quantum mechanics, 
a wide number of hypotheses and ideas began to spawn. 
In 2003, Birbil and Fang [14] offered Electromagnetism-like 
(EM) mechanism on the ground of the superposition rules 
of electromagnetism. Big Bang–Big Crunch (BB-BC)  [9] 
was presented in 2005, which was inspired by the theory of 
destruction and creation of the universe. Moreover, some 
other algorithms came out, for example, Central Force 
Optimization which was inspired by Newton's gravitational 
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law and laws of motion algorithms  [15] by Formato in 
2007, and also, Gravitational Search Algorithm by Rashedi 
et  al.  [13]. Kaveh and Khayatazad  [10] proposed Ray 
Optimization algorithm (RO) in 2014 based on Snell's light 
refraction law. Abedinpourshotorban et  al.  [18] proposed 
electromagnetic field optimization based on various elec-
tromagnets with different polarities 2016. In 2016 Galactic 
Swarm Optimization was presented by Muthiah-Nakarajan 
and Noel  [16] and Water Evaporation Optimization  [11] 
was suggested by Kaveh and Bakhshpoori. Most recently 
in 2017, Kaveh and Dadras [12] presented thermal exchange 
optimization on the grounds of Newton's law of cooling.

2.2 Construction Site Layout Planning (CSLP)
The formulation of the construction site layout planning 
(CSLP) problem is mostly about the location of a variety 
of facilities in particular spots inside the site borders, and 
at the same time, optimizing layout objectives and meet-
ing the limitations of that layout. Unarguably, having an 
optimal construction site layout can significantly reduce 
the transportation time and overall costs, and what's more, 
it can escalate the productivity and create a safe working 
environment. The CSLP problem or in other words assign-
ing a number of predetermined facilities n, optimally to 
a number of predetermined unoccupied locations m, where 
m ≥ n. Generally speaking, the CSLP problem can be mod-
eled either as a facility to site assignment or a facility to 
location assignment  [29]. The first assigns a  set of pre-
defined facilities to a set of predefined locations on site. 
The  method of facility to site assignment, in contrast, 
assigns a set of predefined facilities to any available space 
which is unoccupied on site and results in a more compli-
cated formulation, since several spatial restrictions must 
be satisfied at the same time. Whether all facilities can 
fit to every possible location or not is a deciding factor in 
both problem forms, because it. The CSLP problem can 
be told apart as a dynamic or a static one which highly 
relates to whether non-changing or changing site facilities 
and site spaces are taken into account in various project 
phases. CSLPs are known as combinatorial optimization 
problems. In this vein, there are two approaches including 
metaheuristics, especially, when it comes to large search 
sized problems, and also, the exact approach requires, with 
a global search, for smaller search sized problems  [30]. 
Selecting each of these algorithms relies on many a fac-
tor such as the quality of the solution, computational time, 
interaction of parameters, complexity, and behavior of the 
algorithm, in  particular the analysis of larger problems. 

Different search algorithms have been used in solving 
CSLPs. Yeh  [31] presented the application of annealed 
neural networks, Li and Love  [32] applied the Genetic 
Algorithm (GA) to find the optimal solution in a site-level 
unequal-area facility layout problems. Therefore, Li and 
Love [33], who had this presumption that predetermined 
locations are both rectangular shape and satisfactorily suf-
ficiently large to embed the biggest facility, to solve the 
CSLP they used the genetic algorithm. In addition, Gharaie 
et  al.  [34] by applying ant colony optimization found a 
solution for their model. Mawdesley and Al-Jibouri  [35] 
proposed a sequence-based genetic formulation of the 
CSLP problem. They estimated its performance through 
comparing its findings with that of Yeh [31]. A joined max-
min ant system, in other words MMAS, and GA model 
was suggested by Lam  et  al.  [36] in which MMAS is 
applied to develop the initial population for the GA appli-
cation. What's more, in order to handle a site pre-cast 
yard layout problem, Cheung et  al.  [37] proposed utiliz-
ing the GA software Evolver. Moreover, a multi-searching 
tabu search tabu search procedure by Liang and Chao [38] 
which relied on efficient diversification and intensification 
methods to properly enhance the different arrangements in 
the facility layout problem. Lam et al. [36] applied an Ant 
Colony Optimization (ACO) algorithm to solve the CSLP 
problem where the proximity of the facilities was calcu-
lated by the application of entropy technique and fuzzy 
reasoning. To lay out the pre-cast facilities in the construc-
tion site, Wong et al. [1] elaborate upon a GA and a mixed 
integer programming (MIP) model to produce optimal 
layout solutions. Gholizadeh et al. [39] carried out a har-
mony search algorithm as an alternative tool for the solu-
tion of the CSLP problem. In this line of thought, a Particle 
Swarm Optimization (PSO) was proposed by Zhang and 
Wang [40] for an unequal area static CSLP problem, for-
mulated as a quadratic assignment problem (QAP).

3 Optimization algorithms
3.1 Big Bang-Big Crunch (BB-BC)
The Big Bang–Big Crunch (BB–BC) [9] algorithm is 
inspired mainly from the expansion phenomenon of Big 
Bang and shrinking phenomenon of Big Crunch. This 
is a  commonly held belief that the Big Bang is the the-
ory of the advent of the universe. As far as this theory is 
concerned about space, time, energy, and matter that at 
one time all of them in the universe were squeezed into 
a  minuscule volume, then a tremendous explosion hap-
pened leading to the creation of our universe. After that 
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until now, the universe is constantly expanding. Generally 
speaking, this expansion of the universe is because of 
Big Bang. Many scientists, on the other hand, hold this 
view that this expansion will not continue for good, and 
as a result of which, all matters would fall down into the 
largest black hole which pulls everything within it, which 
is called as Big Crunch.

There are two conspicuous phases in BB-BC algorithm, 
namely, Big Crunch phase and Big Bang phase. Firstly, 
during Big Crunch phase, the center of mass will be com-
puted resembling black hole (gravitational attraction). 
Secondly, during Big Bang phase, the center of mass will 
be computed resembling black hole (gravitational attrac-
tion). Big Bang phase makes sure the exploration of solu-
tion space. Big Crunch phase accomplishes the necessary 
exploitation and convergence, as well.

BB-BC algorithm suffers from botching all candidates 
into a local optimum. Should a candidate with the best fit-
ness value converge to an optima at the starting point of 
the algorithm, as a result of which, all remaining candi-
dates will follow that best answer and be trapped into local 
optima. This happens on the ground that the initial pop-
ulation is not uniformly dispersed in the solution space. 
Therefore, this algorithm makes a methodology available 
to obtain uniform initial population in BB-BC [9].

The algorithm named as Big Bang-Big Crunch (BB-BC) 
is taken from the prevailing evolutionary theory for the ori-
gin of the universe: the Big Bang Theory. As far as this 
theory is concerned, in the Big Bang phase, particles are 
drawn toward irregularity by losing energy, while in the 
Big Crunch phase, they converge toward a particular direc-
tion. BB-BC begins the same way as other population based 
metaheuristics do; it commences with a set of random ini-
tial candidate answers, as the initial Big Bang. To be more 
specific, every Big Bang phase will be followed in advance 
of a Big Crunch phase, but the first population is an excep-
tion because it should be produced randomly within the 
search space. A Big Crunch phase - after each Big Bang 
phase - for determining a convergence operator should take 
place, because in this way particles will be drawn into an 
orderly fashion in the following Big Bang phase. The con-
vergence operator can be the weighted average of the posi-
tions of the best candidate solution or the position of the 
candidate solutions. These two contraction (Big Crunch) 
and dispersing (Big Bang) phases are occurred several 
times in the cyclic body of the algorithm in succession to 
meet the expectation of a stopping criteria with the aim of 
steering the particles toward the global optimum [9].

3.2 Ray Optimization Algorithm (RO)
The fundamental notion behind the RO is based on Snell's 
law which is the refraction of light. According to this 
approach, every solution vector is simulated by a light ray 
which moves in the space. The direction of movement of 
a light ray is altered when it passes from a lighter medium 
to a darker medium. Thanks to this occurrence, one can 
lead the solution vector to a global or near-global optimum 
solution [10].

In this regard, like other multi-agent methods, the Ray 
Optimization (RO) algorithm proposed by Kaveh and 
Khayatazad [10] has several particles which constitute 
the variable of the problem. These agents are defined as 
rays of light. When light travels from a lighter medium 
to a darker one – based on the Snell's light refraction law 
– its direction is altered and it also reflects. This behavior 
assists the agents to scrutinize the search space in early 
stages of the optimization process and to lay the founda-
tion for them to converge in the final stages.

According to Snell's light refraction law, light reflects 
when it travels from one medium to another. The refrac-
tion relies on (1) the refraction index ratio of two mediums 
and (2) the angle between the incident ray and the normal 
vector of the interface surface of two mediums. When it 
goes across from a lighter medium to a darker one, through 
the alteration of its direction, it gets closer to the normal 
vector. This physical behavior is the foundation of the RO. 
The agents of RO are regarded as starting points of rays 
of light that are updated in the search space or that travel 
from one medium to another one based on Snell's light 
refraction law. Clearly, since each ray of light is a vector, 
its direction and length is the searching step size in the 
current iteration, its commencing point is the previous 
position of the agent in the search space, and its end point 
is the current position of the agent achieved by adding 
the step size to the starting point. The refraction vector is 
obtainable based on Snell's law as the new searching step 
size by taking into account an effective vector as the nor-
mal vector of the interface surface between two mediums 
and an effective value for the refraction index ratio of two 
mediums. Subsequently, the new position of agents will be 
updated points to explore the search space and converge to 
the global or near-global optimum. The current position of 
the agents as both ending and starting points of this vec-
tor is necessary to utilize the Snell's law. Nevertheless, the 
other one should be selected in such a way that it yields 
a well balance between exploration and exploitation. 
RO  considered efficaciously the normal vector in order 
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to start from a point determined based on the individual 
and collective information of agents and end at the cur-
rent position of agents. RO begins from a  random initial 
search step sizes and a randomly generated initial candi-
date solutions. These are the rays of light that travel from 
one medium to another in the cyclic body of the algorithm. 
In actuality, RO set out with the aim of enhancing the qual-
ity of the offered solutions by refracting the rays toward 
the promising points acquired according to the well-known 
solution by each agent and all of them [10].

3.3 Water Evaporation Optimization Algorithm 
(WEO)
The inspiration source of the idea of Kaveh and 
Bakhshpoori [11] was the evaporation of a small amount of 
water molecules on the solid surface with different wetta-
bility which can be examined by molecular dynamic sim-
ulations. According to the molecular dynamic simulations, 
it is common knowledge that, when the surface is altered 
from hydrophobicity to hydrophility, the evaporation speed 
will not bring about any sign of a monotonically reducing 
from intuition, but rather, escalate first and then decrease 
after meeting a maximum value. By the time that the sur-
face wettability of the substrate is not high enough, the 
water molecules collect into the form of a sessile spher-
ical cap. The crucial factor that influences the evapora-
tion speed is the geometry shape of the water aggrega-
tion. At  the same time, when the surface wettability of 
the substrate is high enough, the water molecules spread 
to a monolayer, and the geometric factor has no influence 
anymore, and the obstacles of energy which are supplied 
by the substrate instead of the geometry shape influence 
the evaporation speed. WEO considers water molecules 
as algorithm individuals. Solid surface or substrate with 
variable wettability is shown as the search space. Reducing 
the surface wettability, that is, the substrate changing from 
hydrophility to hydrophobicity, makes changes in the water 
aggregation from a monolayer to a sessile droplet. The very 
reaction is aligned with the way layout of individuals alters 
to each other as the algorithm develops. Reducing wetta-
bility of the surface can show the reduction of objective 
function for a minimizing optimization problem. For hav-
ing up-to-date individuals in which its pattern of change 
is compatible with the global and local search ability of 
the algorithm, and also can assist WEO having remarkably 
well converged behavior and simple algorithmic structure, 
evaporation flux rate of the water molecules can be seen as 
the best suitable measure [11].

3.4 Thermal Exchange Optimization Algorithm (TEO)
Kaveh and Dadras [12] proposed a novel metaheuristic 
named Thermal Exchange Optimization (TEO) algorithm, 
which was based on Newton's law of cooling. Newton's law 
of cooling holds this view that the rate of heat loss of a body 
is proportional to the difference in temperatures between 
the body and its surroundings. TEO takes into account 
each of its particles as a heating or cooling object, and by 
incorporating another agent as the environment, a heat 
transferring and thermal exchange occurs between them. 
The new temperature of the object is considered as its next 
position in the search space.

TEO begins from a set of randomly generated initial 
candidate solutions, the same as other metaheuristics do. 
In every iteration of the algorithm, all agents of the pop-
ulation are evaluated and sorted according to their objec-
tive function values. Afterwards, the population is catego-
rized into two sections with the same number of objects. 
Regardless of which group objects belong to, all of them 
will be affected by the environmental temperature. In this 
regard, should the object belong to the first half, its envi-
ronmental temperature will be its corresponding object 
from the second part and the other way around. The best 
results are the objects from the first half; they have higher 
temperatures that are cooled by moving a little bit toward 
the particles with a lower temperature. The bad particles, 
from the objects from the second half and have low tem-
perature, are heated by moving toward the particles with 
higher temperature. The heat transferring between the 
objects happens in the cyclic body of the algorithm in order 
to conduct all particles to the better positions without any 
variance in the temperature. It is worth mentioning that 
TEO takes advantage of having a memory with a partic-
ular size for saving the best-so-far known solutions. TEO 
used these memorized particles in order to replace a simi-
lar number of worst ones in each of its iterations [12].

3.5 Gravitational Search Algorithm (GSA) 
The concept of gravitational search algorithm (GSA) lies 
behind the law of gravity and the idea of mass interac-
tions [13]. The GSA applies the theory of Newtonian phys-
ics and its searcher agents are the collection of masses. 
In GSA, there is an isolated system of masses which applies 
the gravitational force, every mass in the system can find 
the location of other masses. Thus, the gravitational force 
can be seen as a tool for transferring information between 
various masses. The GSA agents can be defined as objects; 
additionally, their performance is measured by their 
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masses. All these objects attract each other by a gravity 
force, and this force brings about a movement of all objects 
globally toward the objects with heavy masses. The heavy 
masses correspond to better solutions of the problem. 
Moreover, the position of the agent corresponds to a solu-
tion of the problem, and its mass is determined using a fit-
ness function [13].

3.6 Electromagnetism-like Mechanism (EM)
The superposition principle of electromagnetism is the 
main source of EM [14] algorithm, which asserts that the 
force applied on a point by other points is inversely pro-
portional to the distance between the points and directly 
proportional to the product of their charges. Points in 
solution space are considered as particles. The charge of 
each point is computed in accordance with their objective 
function value. As far as classical physics is concerned, 
the charge of a particle generally remains the same, but in 
this heuristic the charge of each point is not constant, but 
rather, it changes from one iteration to another [14].

3.7 Central Force Optimization (CFO)
CFO [15] is based on the theory of particle kinematics in 
gravitational field. Newton’s universal law of gravitation 
indicates that larger particles will have more attraction 
power, in comparison with smaller particles. Therefore, 
smaller ones will be attracted towards the larger ones. 
With this in mind, subsequently, all smaller particles will 
be attracted towards the largest particle. This largest par-
ticle can be resembled as the global optimum solution in 
case of optimization. To replicate this idea in CFO, a set 
of solutions is taken into account as probes on the solution 
space. Each probe will undergo gravitational attraction 
due to the other probes [15].

3.8 Galactic Swarm Optimization (GSO)
Recently, Galactic swarm optimization (GSO) introduced 
a metaheuristic based on the idea of stars and galaxies 
in the universe. Because this algorithm applies multiple 
exploitation and exploration cycles, it paves the way for 
finding the global optimum with the maximum accuracy. 
The original galactic swarm optimization algorithm sim-
ulates the motion of stars and galaxies in the universe. 
Since the stars are not distributed in equal numbers in the 
cosmos, they are concentrated in galaxies and as a result 
they are not evenly distributed. The attraction of the stars 
and galaxies in the GSO algorithm is mimicked in the fol-
lowing way [16].

First, the initial population is categorized into subpop-
ulations which are called sub-swarms; all the individu-
als of the sub-swarms begin their motion as stated by the 
PSO algorithm with a specific number of iterations, and 
all the individuals in each subpopulation will be attracted 
towards the individual with better fitness; thus, at the end 
of the iterations each of the subpopulations will be dis-
placed by the best individual of each of the subpopulations.

The best individuals of all the subpopulations will pass 
into a second phase, where they will form a new super 
swarm, and (in the same way they will move according 
to the PSO algorithm at the end of the iterations) the GSO 
algorithm will return us the best individual of the super 
swarm which will represent the best solution found in the 
entire initial population [16].

3.9 Quantum-inspired Genetic Algorithm (QGA)
As stated by quantum mechanics, an orbit is defined when 
an electron is moving around the nucleus in an arc path. 
In this line of thought, electrons are located in different 
orbits, which depend on the energy level and angular 
momentum. An electron in lower level orbit can jump to 
higher level orbit by taking in a certain amount of energy; 
similarly a higher level electron can jump to lower energy 
level by releasing a certain amount of energy. This type 
of jumping is known as discrete. There is no intermediate 
state in between two energy levels. The position where 
an electron lies on the orbit is uncertain, it is a possibil-
ity of being situated at any position in orbit at a particular 
time. The unpredictability of the electron's position is also 
referred to as the superposition of the electron [17].

As stated by classical computing, a bit is represented 
either by 0 or 1. In quantum computing, on the other hand, 
this is named as qubit. The state of a qubit can be 0 or 1 or 
both at the same time in superposition state. This super-
position of qubit emulates the superposition of particles or 
electrons. The state of qubit at any specific time is defined 
by probabilistic amplitudes. The location of an electron is 
represented with regard to qubits by a vector named quan-
tum state vector.

QGA [17] utilized the concept of parallel universe in 
Genetic Algorithm (GA) to mimic quantum computing. 
As far as this parallel universe interpretation is concerned, 
each universe carries its own version of population. 
All populations go after the same rules, but one universe 
can interfere in the population of other universe. This 
interference happens as in the shape of a different kind of 
crossover named interference crossover, which paves the 
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way for having good exploration capability to the algo-
rithm. In QGA, all the solutions are encoded using super-
position, and what's more, all of these solutions may not be 
authentic, which causes difficulties during the execution of 
crossover [17].

3.10 Electromagnetic Field Optimization (EFO)
In 2016, Abedinpourshotorban et al. [18] presented 
a creative metaheuristic intelligent algorithm named 
Electromagnetic Field Optimization. While the swarm-
based metaheuristic algorithms are widely inspired by 
biology, on the other hand, the EFO algorithm is inspired 
by the electromagnetic field law used in physics. In the 
EFO algorithm, because of the forces of attraction and 
repulsion in the electromagnetic field, the electromagnetic 
particle (EMP) stays away from the worst solution and 
tries to find the best solution. Finally, all the electromag-
netic particles (EMPs) gather around the optimal solution.

A magnetic field is produced around the electrified iron 
core, which is made of an electromagnet. An electromagnet 
has only one polarity and it is dependent on the direction 
of the electric current. Subsequently, an electromagnet has 
two features of repulsion or attraction, electromagnets with 
different polarity attract each other, and those with simi-
lar polarity repel each other. The intensity of attraction is 
5–10% higher than repulsion; moreover, the ratio between 
attraction and repulsion is set as golden ratio [18], which 
can improve the algorithm to search for the optimal solu-
tion successfully in the search space. The main idea of the 
optimization problem has to do with finding the pole (max-
imum or minimum) of the corresponding fitness in the pre-
scribed range and the objective function [18]. Each possible 
solution of the problem is represented with an electromag-
netic particle consisting of a number of electromagnets. 
The electromagnetic field comprises many electromagnetic 
particles and it can be described a  space in 1-D (dimen-
sion), 2-D, 3-D, or hyperdimensional space [18]. The num-
ber of electromagnets of an electromagnetic particle corre-
sponds to variables of the optimization problem, along with 
the dimension of the electromagnetic space. In addition, 
all  electromagnets of one electromagnetic particle have 
similar polarity. As a result of which an electromagnetic 
particle has the same polarity with its electromagnets.

4 Site layout planning test problems and optimization 
results
It goes without saying that the construction site layout 
problem was formulated as a QAP. At first, Koopmans and 
Beckmann [41] proposed a formulation which was dealing 
with individual locations, to put it differently, assigning  
facilities to  locations. Furthermore, this basic hypothe-
sis is like the foundation for the layout problem that each 
facility occupies precisely the same amount of area as 
other facilities do; therefore, there is no difference that 
what facility is assigned to what site [41]. Based on this 
fact that the construction site layout problems are a per-
mutation problems, by altering of the continuous-based 
initial solution vectors into the permutation vector by 
applying the indices that would sort the corresponding 
initial solution vector (see Table 1).

The results and analysis of the algorithms after 30 
independent runs (to remove their inherent randomness) 
on each of the cases are presented below. The total num-
ber of times that the objective function was called from 
each algorithm was kept equal so that the performance of 
the algorithms can be measured correctly.

4.1 Site-level facilities layout problem
This problem tries to find the most suitable arrangement 
for placing a set of predetermined facilities into a set of 
predetermined spaces on the site. Moreover, this problem 
is based on this hypothesis that every predetermined place 
is capable of accommodating the largest one among the 
facilities. The goal of site-level facility layout has to do 
with minimizing the overall traveling distance of site per-
sonnel between facilities. Let δik be a binary variable that 
indicates whether facility i is located at location k (δik = 1) 
or not (δik = 0). Similarly, let δjk be a binary variable that 
indicates whether facility j is located at site l (δjk = 1) or not 
(δjk = 0). Let fij be the number of daily trips between facili-
ties i and j by construction workers. Let dkl be the distance 
between sites k and l. Then, TD is the total daily distance 
traveled by construction workers, given by the Eq. (1) and 
subject to Eq. (2):

Minimize TD f d
i

N

j

N

l

N

k

N

ik jl ij kl�
� � � �
����

1 1 1 1

� � 	 (1)

Table 1 Solution vector representation

Locations 1 2 3 4 5 6 7 8 9

Facilities (Initial solution vector) 0.33 0.92 0.25 0.23 0.79 0.04 0.1 0.74 0.69

Facilities (Modified solution vector) 5 9 4 3 8 1 2 7 6
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The distance is represented as the length between cen-
ters of the two locations if the two locations are beside each 
other; if not, it is the sum of segmental distances between 
the two locations. For instance, dik is the sum of dmj and djk 
If there are two paths linking the two locations, then the 
shorter path is chose for calculating the distance [32].

The number of predetermined places should be equal 
to or greater than the number of predetermined facilities. 
A number of dummy (fictitious) facilities will be added to 
make both numbers equal when the number of predeter-
mined places is greater than the number of predetermined 
facilities. By allocating both frequency and the distance as 
0, the dummy facilities will not influence the layout results.

The performance of ten physics inspired metaheuristics 
in solving Site-level facilities layout problem are inves-
tigated by a case study from Li and Love [32]. In situa-
tions like this, there are 11 facilities to be allocated to 11 
locations with predetermined geometric positions on site. 
As can be seen in Table A1, there are the 11 facilities and 
their corresponding index numbers. The travel distance 
between predetermined locations is measured and pre-
sented in Table A2. Trip frequency between facilities influ-
ences site layout planning. Thus, the frequencies of trips 
made between facilities in one day are shown in Table A3.

This case was solved by accomplishing 30 independent 
optimization runs through 200 iterations to achieve statis-
tically significant findings by the investigated algorithms. 
Statistical results of 30 independent runs are compared 
in Table 2. According to Table 2, the average, worst and 
standard deviation for GSA are 12,555, 12,612 and 26.81, 
respectively, which are better than other metaheuristics. 
This not only will shows that GSA comes up with a better 
best solution ,but it also is more stable. Having a close com-
petition, the TEO shows better results than other solution 
methods. The average, worst and standard deviation for 
TEO are 12,556, 12,654 and 31.16, respectively. The mean 
convergence curves for all algorithms with regard to the 
number of iterations are shown in Fig. 1. A comparison of 
the results of all metaheuristics for this case is shown in 
Table 3. The findings present that in this example the best 
answer is 12,538 which is better than previous studies and 
all the studied metaheuristics are able to find this solution.

4.2 Site precast yard layout planning problem
A site precast yard layout planning optimization model, 
which has been proposed by Cheung et al. [37], and many 
methods were applied to solve the model [1, 4, 30, 38, 42]. 
The following explanations, which are derived from the 
model of Cheung et al. [37], try to clarify the definition of the 
site pre-cast yard layout arrangement optimization problem.

•	 The spatial arrangement of available locations is 
unchangeable.

•	 One location for only one facility at a time 
•	 Equality between the number of locations and the 

number of facilities (substitute facilities can be added 
for computation purposes if numbers of facilities are 
fewer than the number of places)

In the Cheung's model, n locations are occupied by 
n facilities. As far as the repetition of traveling and the 
description of distance are concerned, the facilities are 
located in their suitable locations; also, different kinds of 
resources will be taken into account so that the expenses 
of transportation between facilities could be measured 
properly. Thus, the layout planning can meet its final goal, 
which is obtaining the lowest transportation of resources 
to facilities by having a well-arranged site. According to 
the goal of a function in the site, any replacement facili-
ties with each other can increase the total cost or bring it 
down. The total cost is defined as follows:

minimize Total t TCLMk i jj

n

i

n

k

n
Cos

,
� ��� ,	 (3)

where TCLMk i,j calculates by Eq. (4):

Table 2 Comparison of the results of 30 independent runs for the first 
case example

Algorithm Best Average Worst STD

PSO 12546 12,560 12756 47.39

CBO 12546 12558 12768 45.51

ECBO 12546 12555 12746 32.11

BB-BC* 12538 12581 12678 39.46

RO* 12538 12602 12746 91.52

WEO* 12538 12588 12756 89.96

TEO* 12538 12556 12654 31.16

GSA* 12538 12555 12612 26.81

EM* 12538 12664 12768 103.04

CFO* 12538 12606 12768 97.35

GSO* 12538 12599 12756 90.50

QGA* 12538 12569 12746 60.83

EFO* 12538 12575 12678 37.73

* Present work
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TCL M CMk i j LM i j Mk, ,� � .	 (4)

CMk shows cost per unit distance according to resources 
Mk flow. MLM i,j defines the distance moved of resource Mk 
flow per unit time between locations i and location j which 
will be computed by Eq. (5):

M FL DLM i j Mk i j ij, ,� � .	 (5)

The sign of FLLM i,j shows the frequency of resource Mk 
flow from and to between location i and j, per unit time. 
These calculations use Eq. (6). Also, Dij means the distance 
between location i and j, which will be computed by Eq. (7):

FL

FL FL FL
FL FL FL

FL

Mk i j

Mk Mk Mk q
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�

�

�
�
�
�

,	 (6)

D XL XL YL YLi j j i j i, � � � � ,	 (7)

wherever we see Li and Lj it means that they are the coor-
dinates of the locations within the site area.

There are 11 predetermined locations in the yard that 
require to have 11 allocated facilities. In this regard, in 
Table  A4 the facilities and their corresponding index 
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Fig. 1 Mean convergence history of the proposed physics-inspired metaheuristic algorithms

Table 3 Comparison of the best solution of algorithms

Algorithms Total distance 
Best layout 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

PSO [4] 12,546 9 11 5 6 7 4 3 1 2 8 10

CBO [4] 12,546 9 11 6 5 7 4 3 1 2 11 4

ECBO [4] 12,546 9 11 4 5 7 6 3 1 2 8 10

GA [32] 15,090 11 5 8 7 2 9 3 1 6 4 10

ACO [34] 12,546 9 11 6 5 7 2 4 1 3 8 10

BB-BC* 12,538 9 11 5 6 7 2 4 1 3 8 10

RO* 12,538 9 11 5 6 7 2 4 1 3 8 10

WEO* 12,538 9 11 5 6 7 2 4 1 3 8 10

TEO* 12,538 9 11 5 6 7 2 4 1 3 8 10

GSA* 12,538 9 11 5 6 7 2 4 1 3 8 10

EM* 12,538 9 11 5 6 7 2 4 1 3 8 10

CFO* 12,538 9 11 5 6 7 2 4 1 3 8 10

GSO* 12,538 9 11 5 6 7 2 4 1 3 8 10

QGA* 12,538 9 11 5 6 7 2 4 1 3 8 10

EFO* 12,538 9 11 5 6 7 2 4 1 3 8 10

* Present work
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numbers are listed. Moreover, Table A5 shows four types of 
resources and transport costs per unit distance. Coordinates 
of the available locations are shown in Table A6. By having 
these coordinates, the rectangular distance matrix Dij for 
the locations was then calculated and displayed as Table 
A7. Flow frequency of the four types of resources between 
the facilities are listed in Table A8.

Because of the central limit theorem, the sample size 
must be equal or more than 30. If the sample size gets 
larger, then the distribution of the sample mean converges 
to the normal distribution; therefore, 30 independent 
experimental runs through 1000 iterations are performed. 
By  applying ten optimization methods, the problem is 
solved by MATLAB R2017a. In this vein, we can see a list 
in Table 4 which is about the analogous results of algo-
rithms for CSLP . The mean convergence curves of algo-
rithms are presented in Fig. 2. Additionally, the compari-
son of best results of this study and preceding studies have 
been provided in Table 5.

According to Table 4 and Fig. 2, clearly, the TEO algo-
rithm converges faster than other algorithms with a high-
er-level of efficiency in the mean (97071) and worst (103020) 
costs, and the standard deviation of the VPS (2773.7) is 
better, in comparison with other algorithms. All in all, the 
Enhanced Colliding Bodies Optimization (ECBO) still 
performs better solutions for this problem [4].

Table 5 shows that facilities 1 through 11 are closest to 
locations 5, 7, 9, 6, 1, 10, 8, 3, 11, 2, and 4, respectively. 

These outcomes are similar to those achieved by Kaveh 
et al. [4]. The proposed layout arrangement plan and flow 
diagram for the site pre-cast yard are presented in Fig. 3.

Table 4 The comparison of algorithms for the CSLP

Algorithm Best Cost Mean Cost Std. Dev. Worst Cost

GA [40] 99788 N/A N/A N/A

MIP [1] 59828 N/A N/A N/A

TS [41] 94858 N/A N/A N/A

HMCSS+LS [42] 92758 N/A N/A N/A

PSO [4] 92758 97667 3363.1 106630

CBO [4] 92758 97504 3149 103038

ECBO [4] 92758 96670 2733.5 102920

CSS [30] 92758 98074.5 3055 105046

WOA [30] 92758 104189 4677.2 111816

VPS [30] 92758 97301.9 2498.2 102308

EVPS [30] 92758 97178.8 2736.4 103502

BB-BC* 92758 100411.4 3311.2 107574

RO* 92758 101428.1 3702.9 107836

WEO* 92758 98147.1 3284.9 105826

TEO* 92758 97071.1 2773.7 103020

GSA* 92758 97111 3019.0 103020

EM* 92758 102905.5 3968.3 107958

CFO* 92758 103144.3 4097.2 108710

GSO* 92758 100827.4 5576.6 109632

QGA* 92758 97432.5 3774.0 105598

EFO* 92758 98817.9 3378.5 107238

N/A: Not available; *Present work

 

0.95

1

1.05

1.1

1.15

1.2

1.25

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Co
st

x 
10

00
00

Iteration

BB-BC
RO
WEO
TEO
GSA
EM
CFO
GSO
QGA
EFO

Fig. 2 The mean convergence curves for the CSLP problem obtained by proposed physics-inspired metaheuristic algorithms



78|Kaveh et al.
Period. Polytech. Civ. Eng., 68(1), pp. 68–87, 2024

4.3 Construction-site layout planning problem
Along with satisfying the layout restrictions, or constraints, 
and optimizing the layout objectives, a set of facilities 
requires to be situated on the site. This model addresses 
some issues such as the calculated cost of adjacency and 
distance of objects; additionally, it considers of space avail-
ability for object location, and what's more, the location and 
view of an object in relation to other objects. The feasibility 

of the layout is calculated as constraints, i.e., each location 
should be allocated with only one facility, and each facil-
ity should be assigned to one location only. The problem is 
adapted from [31] and [35]. Therefore, the site layout prob-
lem is formulated as follows:

minimize F C A D
x i

xi xi
x i y j

xi yi xi xy� ��� ����� � � ,	 (8)

subject to:

Table 5 Best layouts of this paper and previous researches

Algorithm Best Cost
Best layout

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

GA [40] 99788 1 10 9 6 8 5 11 3 7 4 2

MIP [1] 59828 1 10 8 6 7 5 9 3 11 4 2

TS [41] 94858 5 7 10 8 1 9 6 3 11 2 4

HMCSS+LS [42] 92758 5 7 9 6 1 10 8 3 11 2 4

PSO [4] 92758 5 7 9 6 1 10 8 3 11 2 4

CBO [4] 92758 5 7 9 6 1 10 8 3 11 2 4

ECBO [4] 92758 5 7 9 6 1 10 8 3 11 2 4

CSS [30] 92758 5 7 9 6 1 10 8 3 11 2 4

WOA [30] 92758 5 7 9 6 1 10 8 3 11 2 4

VPS [30] 92758 5 7 9 6 1 10 8 3 11 2 4

EVPS [30] 92758 5 7 9 6 1 10 8 3 11 2 4

BB-BC* 92758 5 7 9 6 1 10 8 3 11 2 4

RO* 92758 5 7 9 6 1 10 8 3 11 2 4

WEO* 92758 5 7 9 6 1 10 8 3 11 2 4

TEO* 92758 5 7 9 6 1 10 8 3 11 2 4

GSA* 92758 5 7 9 6 1 10 8 3 11 2 4

EM* 92758 5 7 9 6 1 10 8 3 11 2 4

CFO* 92758 5 7 9 6 1 10 8 3 11 2 4

GSO* 92758 5 7 9 6 1 10 8 3 11 2 4

QGA* 92758 5 7 9 6 1 10 8 3 11 2 4

EFO* 92758 5 7 9 6 1 10 8 3 11 2 4
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 Fig. 3 Proposed layout arrangement plan for the site pre-cast yard 
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� �yj xiif and y x� � �0 1 ,	 (9)

� �xj xiif and j i� � �1 1 .	 (10)

δxi is the permutation matrix variable ( if facility x is 
assigned to location i) where F is the cost function; Cxi is 
the construction cost of assigning facility x to location i; 
Aij = 1 if location i is adjacent to location j; Dxj is the inter-
active cost of assigning facility x to the location adjacent 
to facility y. 

For comparing the performance of the ten algo-
rithms, a benchmark case was taken from Mawdesley 
and Al-Jibouri [35]. This case study demonstrates a prac-
tical application in construction site layout problem with 
the aim of reducing the construction cost. The number 
of locations matches the number of facilities. In order to 
gain more information about this case study, please refer 
to Yeh  [31]. In the third case, on a site, this is going to 
construct two permanent buildings. There are 12 available 
locations where 12 facilities may be placed (names and 
index names of them are presented in Table A9).

The construction cost matrix (C), site neighboring index 
matrix (A) and interactive cost matrix (D) (the unit of all costs 
in the test case is 1,000) are shown in Tables A10–A12, 
respectively. Table A10 demonstrates that there is a penalty 
of 100 for positioning facility 1 or 2 at the location 9 and 10. 
Note that the units of all costs are $1000. The Interactive 
Cost Matrix (D) and Site Neighboring Index Matrix (A) are 
shown in Tables A12 and A11, respectively.

The suggested physics-inspired metaheuristic algo-
rithms were employed to solve this example, and the 
results were compared. A comparison between the results 
of the optimal designs reported in the literature and the 
current study is shown in Table 6. According to exper-
iments, the GSA algorithm displayed to be efficient in 
Case  3. Moreover, Fig. 4 is about comparisons between 
mean convergence curve of various algorithms. The GSA 
seems to be a possible candidate for optimization of CSLP, 

Table 6 Comparison of the algorithms for case 3

Algorithm Average Worst Best STDEV

ANN [31] 114.7 12.2 93 N/A

GA [35] N/A N/A 90 N/A

GA [8] 92.0 N/A 90 N/A

PSO [8] 90.6 N/A 90 N/A

ACO [8] 91.2 N/A 90 N/A

BB-BC* 94.0 100 90 2.8

RO* 94.6 103 90 3.5

WEO* 93.1 100 90 2.9

TEO* 92.3 98 90 2.1

GSA* 91.8 99 90 2.2

EM* 94.7 104 90 3.7

CFO* 94.7 104 90 3.6

GSO* 94.2 102 90 3.4

QGA* 94.1 101 90 3.3

EFO* 93.9 100 90 2.8

N/A: Not available; *Present work
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mostly because, its convergence in the early stages of the 
optimization process is fast enough. The best value of 
objective function in this study was 90 ($1,000).

In Table 7, the best values that algorithms have sug-
gested are listed. All methods that were used are performed 
equally with regard to efficacy.

5 Final discussion, concluding remarks, and future 
directions
In this paper, ten physics-inspired metaheuristic algo-
rithms are employed to solve three real construction site 

layout planning problems. Effectiveness is a criterion by 
which the performances of these metaheuristic algorithms 
are compared in this study. According to final results, all of 
these metaheuristics are capable of reaching the best cost. 
By investigating the results of experimental studies on 
mathematical functions and various construction site lay-
out planning problems, it can be found that GSA and TEO 
perform better than other renowned or new algorithms 
within the majority of test instances. Since only three 
benchmark functions have been tested, the lack of research 
on broader dimensions is the limitation of this research.

Table 7 Comparison of the Optimal layout solutions of algorithms for Case 3

Algorithm Best Cost 
($1,000)

Best layout

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

ANN [31] 93 11 12 6 1 7 9 8 10 4 3 2 5

GA [35] 90 9 12 6 10 8 11 7 4 5 2 1 3

GA [8] 90 10 12 9 2 8 11 7 4 5 3 1 6

PSO [8] 90 10 12 9 2 8 11 7 4 5 3 1 6

ACO [8] 90 10 12 9 2 8 11 7 4 5 3 1 6

BB-BC* 90 9 12 6 10 8 11 7 4 5 2 1 3

RO* 90 9 12 6 10 8 11 7 4 5 2 1 3

WEO* 90 9 12 6 10 8 11 7 4 5 2 1 3

TEO* 90 9 12 6 10 8 11 7 4 5 2 1 3

GSA* 90 9 12 6 10 8 11 7 4 5 2 1 3

EM* 90 9 12 6 10 8 11 7 4 5 2 1 3

CFO* 90 9 12 6 10 8 11 7 4 5 2 1 3

GSO* 90 9 12 6 10 8 11 7 4 5 2 1 3

QGA* 90 9 12 6 10 8 11 7 4 5 2 1 3

EFO* 90 9 12 6 10 8 11 7 4 5 2 1 3
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Appendix A 
Information of all instances are presented below in tables.

Table A1 Facilities and their corresponding index numbers for case Study 1

Index number Site facilities Note

1 Site office Not fixed

2 False work workshop Not fixed

3 Labor residence Not fixed

4 Storeroom 1 Not fixed

5 Storeroom 2 Not fixed

6 Carpentry workshop Not fixed

7 Reinforcement steel workshop Not fixed

8 Side gate Fixed to 1

9 Electrical, water and other utilities control room Not fixed

10 Concrete batch workshop Not fixed

11 Main gate Fixed to 10

Table A2 Travel distance between predetermined locations for Case 1

Distance
Location

1 2 3 4 5 6 7 8 9 10 11

Location

1 0 15 25 33 40 42 47 55 35 30 20

2 15 0 10 18 25 27 32 42 50 45 35

3 25 10 0 8 15 17 22 32 52 55 45

4 33 18 8 0 7 9 14 24 44 49 53

5 40 25 15 7 0 2 7 17 37 42 52

6 42 27 17 9 2 0 5 15 35 40 50

7 47 32 22 14 7 5 0 10 30 35 40

8 55 42 32 24 17 15 10 0 20 25 35

9 35 50 52 42 37 35 30 20 0 5 15

10 30 45 55 49 42 40 35 25 5 0 10

11 20 35 45 53 52 50 40 35 15 10 0

Table A3 Trip frequency between facilities for Case 1

Trip frequency
Facility

1 2 3 4 5 6 7 8 9 10 11

Facility

1 0 5 2 2 1 1 4 1 2 9 1

2 5 0 2 5 1 2 7 8 2 3 8

3 2 2 0 7 4 4 9 4 5 6 5

4 2 5 7 0 8 7 8 1 8 5 1

5 1 1 4 8 0 3 4 1 3 3 6

6 1 2 4 7 3 0 5 8 4 7 5

7 4 7 9 8 4 5 0 7 6 3 2

8 1 8 4 1 1 8 7 0 9 4 8

9 2 2 5 8 3 4 6 9 0 5 3

10 9 3 6 5 3 7 3 4 5 0 5

11 1 8 5 1 6 5 2 8 3 5 0
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Table A4 Facilities and their corresponding index numbers in Case 2

Index Number Facilities

1 Main gate

2 Side gate

3 Batching plant

4 Steel storage yard

5 Formwork storage yard

6 Bending yard

7 Cement and sand and aggregate storage yard

8 Curing yard

9 Refuse dumping area

10 Casting yard

11 Lifting yard

Table A5 Four types of materials and transport costs per unit distance in Case 2

Mk Material Cost Per Unit

1 aggregate, sand and cement/concrete 4

2 reinforcement bars 5

3 formwork 8

4 completed pre-cast units 8.5

Table A6 Coordinates of the available locations in Case 2

Location Number 1 2 3 4 5 6 7 8 9 10 11

X 15 13 22 25 20 12 40 48 48 5 32

Y 40 30 30 20 10 10 10 20 35 20 42

Table A7 Distance between locations for Case 2

Distance Location
1 2 3 4 5 6 7 8 9 10 11

Location

1 0 12 17 30 35 33 55 53 38 30 19

2 12 0 9 22 27 21 47 45 40 18 31

3 17 9 0 13 22 30 38 36 31 27 22

4 30 22 13 0 15 23 25 23 38 20 29

5 35 27 22 15 0 8 20 38 53 25 44

6 33 21 30 23 8 0 28 46 61 17 52

7 55 47 38 25 20 28 0 18 33 45 40

8 53 45 36 23 38 46 18 0 15 43 38

9 38 40 31 38 53 61 33 15 0 58 23

10 30 18 27 20 25 17 45 43 58 0 49

11 19 31 22 29 44 52 40 38 23 49 0
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Table A8 Flow frequency of the four types of materials between the facilities for Case 2

Facility 1 2 3 4 5 6 7 8 9 10 11

1. Aggregate, sand and cement

1 20

2 15

3 35 35

4

5

6

7 20 15 35

8

9

10 35

11

2. Reinforcement

1 30

2 20

3

4 30 20 50

5

6 50 50

7

8

9

10 50

11

3. Formwork

1

2

3

4

5 48

6

7

8

9

10 48

11

4. Complete pre-cast units

1 28

2 20

3

4

5

6

7

8 48 48

9

10 48

11 28 20 48
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Table A9 Site Facilities and their notes for Case 3

Index Name Site Facilities

R1 Reinforcing steel shop 1

R2 Reinforcing steel shop 2

C1 Carpentry shop 1

C2 Carpentry shop 2

F1 Falsework shop 1

F2 Falsework shop 2

B1 Concrete batch plant 1

B2 Concrete batch plant 2

JO Job office

LR Labour residence

E Electricity equipment and water-supply shop

W Warehouse

Table A10 Construction Cost Matrix (C) for Case 3

Site Facilities 1 2 3 4 5 6 7 8 9 10 11 12

R1 35 35 30 30 35 15 10 15 6 6 7 10

R2 35 30 9 9 13 30 30 35 15 18 12 7

C1 18 15 15 15 15 8 14 10 8 10 15 15

C2 13 7 12 18 18 15 15 15 15 8 8 12

F1 18 15 15 20 15 8 10 8 8 7 15 15

F2 14 8 10 17 12 15 15 15 15 8 7 9

B1 32 35 15 15 15 10 9 13 7 10 15 15

B2 31 30 9 8 15 18 15 16 15 15 15 15

JO 39 35 13 8 8 15 18 15 8 18 9 18

LR 18 8 8 8 15 10 15 15 13 15 15 15

E 7 10 8 19 15 10 10 8 15 10 6 15

W 9 10 6 7 7 7 15 15 18 15 15 12

Table A11 Site Neighboring Index Matrix (A) for Case 3

1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 0 0 0 0 0 0 0 0 0 0

2 1 0 1 0 0 0 0 0 0 0 0 0

3 0 1 0 1 0 0 0 0 0 0 0 0

4 0 0 1 0 1 0 0 0 0 0 0 0

5 0 0 0 1 0 1 0 0 0 0 0 0

6 0 0 0 0 1 0 1 0 0 0 0 0

7 0 0 0 0 0 1 0 1 0 0 0 0

8 0 0 0 0 0 0 1 0 1 0 0 0

9 0 0 0 0 0 0 0 1 0 1 0 0

10 0 0 0 0 0 0 0 0 1 0 1 0

11 0 0 0 0 0 0 0 0 0 1 0 1

12 0 0 0 0 0 0 0 0 0 0 1 0
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Table A12 Interactive Cost Matrix (D) for Case 3

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 0 100 100 0 0

2 0 0 0 0 0 0 0 0 100 100 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0

9 100 100 0 0 0 0 0 0 0 0 0 0

10 100 100 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0
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