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Abstract

Highly efficient materials and structures are becoming increasingly common in military, aeronautical, aerospace, mechanical, and civil 

engineering applications. Composite materials have been developed to address the need to combine two or more materials to achieve 

superior properties. Many structural elements, such as laminated beams, use composite materials, but an accurate mathematical 

model of the bending behavior is required due to the abrupt changes in material properties in the interlaminar zones. This accurate 

model can be achieved using zigzag theory. This theory is one of the most commonly used formulations for modeling laminated 

beams. This theory is an improvement of the equivalent single-layer theory as an additional term called the “zigzag function” is used 

to represent the variation in the axial displacement along the cross section. This paper proposes a novel high-order zigzag function 

in a sinusoidal format. Several higher-order beam theories are combined with the proposed functions, and their performances are 

compared with those of other functions in the literature. The results reveal excellent agreement between the proposed formulation and 

the reference solution as well as a more effective combination of zigzag functions and beam theory.
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1 Introduction
Several theories describe the structural behavior of beams, 
among which the best-known and most straightforward 
theory is the classical Euler–Bernoulli theory (EBT) [1]. 
Owing to the inability of EBT to account for shear strain, it 
is better suited for beams with a low height-to-length ratio.

To avoid this limitation of EBT, the first-order shear 
theory, also known as Timoshenko's beam theory (TBT) [2], 
was developed. Although TBT accounts for the shear effect, 
it still has the following drawbacks: the shear stresses at the 
top and bottom of the beam are not nulled; the warping 
effect of the cross section is not considered; the distribu-
tion of the shear stress field in the cross section is repre-
sented incorrectly; and correction factors need to be used. 
To overcome these drawbacks, theories for new higher- 
order kinematics, known as "high-order beam theories", 
have been proposed [3–8].

Single-material beams are frequently analyzed using high- 
order kinematics. However, composite materials have been 
developed, which provide greater flexibility in constructing 

new structures that are more efficient in the desired prop-
erties and thus provide greater diversity in applications in 
various fields [9]. Therefore, to improve the analysis of 
laminated composite beams, it is necessary to couple new 
parameters with the kinematics to capture the interactions 
between the laminae and the individual behavior of each 
lamina [9]. The main theories used in the analysis of lami-
nated composite beams are the equivalent single-layer (ESL) 
theory, layerwise (LW) theory, and zigzag (ZZ) theory.

The LW and ZZ theories are more accurate than the 
ESL theory because they consider the behavior of each 
lamina separately. The LW theory yields results with good 
precision. However, it has unknown quantities propor-
tional to the number of layers of the laminae, resulting in 
high computational costs. Thus, to decouple the number of 
unknowns in the problem from the number of layers with-
out significant losses in the precision of the results, the ZZ 
approach was developed, which incorporates the ZZ effect 
into ESL theories [10].
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Several studies on ZZ laminated beam theory have been 
conducted. Murakami et al. [11] developed a function called 
the "zigzag", which only contains geometric information, 
and applied it to TBT. Di Sciuva [12, 13] formulated the ZZ 
theory with a Heaviside function and incorporated a cubic 
parcel into kinematic for plate problems. Tessler et al. [14] 
developed the refined ZZ theory (RZT) to aid in determin-
ing the stress fields for the TBT. Lularon et al. [15] studied 
the RZT and other beam theories, examining the buckling 
and bending behavior. They demonstrated the possibility of 
visualizing the difference between the stress fields calculated 
using equilibrium equations and constitutive relationships.

The Murakami ZZ function [11] was developed to pro-
vide more accurate formulations while maintaining sim-
plicity. In the work of Carrera [16], the application of the 
Murakami format was studied in the static and dynamic 
analyses of plates. Accordingly, Carrera and Ciuffreda [17] 
developed a unified formulation for this problem. Vidal 
and Polit [18] showed the results of coupling between 
Murakami's ZZ function and sinusoidal higher-order beam 
kinematics. This combination enhances the precision of the 
displacement and stress field results.

This paper presents a unified formulation for higher-or-
der kinematics that incorporates a new higher-order ZZ 
function in a sinusoidal format. Therefore, unlike in pre-
vious research [18], the beam theory and ZZ function are 
of a higher order.

The structure of the present paper is given as follows. 
Section 2 presents definitions, kinematics, governing equa-
tions and procedure for the analytical solution. In Section 3 
provides a numerical example to validate the accuracy and 
performance of the proposed model for a laminated com-
posite beam. In section 4, the concluding remarks are made.

2 Mathematical development
2.1 Definitions
A laminated composite beam with length L = xb – xa, sub-
jected to load q(x) and external forces T in the x- and z-di-
rections, is considered, as shown in Fig. 1.

The cross-sectional height is denoted by 2h, and the 
thickness of each lamina is identified by 2h(k), where 
k = 1, 2, ..., N represents layer numbering (Fig. 2). The global 
coordinates of the beam are given by z(i)(i = 0 , 1, ..., N), 
z0 = –h, zN+1 = h, and z(i) = z(i–1) + 2h for (i = 1, ..., N).

2.2 Kinematics
The present formulation is limited to the linear elastic 
behavior of the material. The displacement fields of var-
ious beam theories that consider shear deformation are 
chosen and unified based on the following hypotheses: 
(1) transverse deformation is absent, (2) the bending com-
ponent of the axial displacement is similar to that given 
by classical beam theory, (3) the shear component of the 
axial displacement provides for the higher-order variation 
in stress and strain such that these response fields are zero 
on the upper and lower surfaces of the beam, and (4) the 
ZZ function is added, providing the zigzag behavior to the 
axial displacement of the laminated composite. Based on 
these hypotheses, the displacement fields for various theo-
ries of unified beams, considering high-order shear strain 
and the ZZ function, are given by Eq. (1) as follows:

u x z u x zw x f z x z x
w x z w x

k
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where w(x) and u(k) (x, z) are the transverse and axial dis-
placements of each layer, respectively, w0(x) and u0(x) are 
the transverse and axial displacements in the midplane of 
the beam, respectively f(z), is a shape function that rep-
resents the higher-order stress and shear strain distribu-
tion along the beam depth (see Table 1), ϕ(x) is the angle 
resulting from shear, φzzk( )  is a ZZ function, and ψ(x) is 
a ZZ amplitude function. Equation (1) can be written as 
a linearly elastic strain field given by Eq. (2) as follows:Fig. 1 General loading and geometry of a composite laminated beam

Fig. 2 General cross section and layers of a composite laminated beam 
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where β(z) is the first derivative of the ZZ function. The lin-
ear constitutive relationship for the beam can be written as
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where Q k
11
� �  and Q k

55
� �  are the elastic properties of ortho-

tropic materials described in [9].
This study proposes a novel formulation for the higher- 

order ZZ function, φzzk( ) , called "sinusoidal zigzag" (ZZ-SIN) 
(see Table 2). In addition, it is proposed to combine the 
proposed higher-order ZZ function (ZZ-SIN) with several 
other higher-order beam theories (see Table  1). ZZ-SIN 
was constructed from the function proposed by 
Murakami et al. [11] and is given by �zz MUR

k z�
� � � � � (–1(k)) – 

[–2z  +  (z(k)  +  z(k–1))]/2h(k). This proposal aims to improve 
the order of accuracy concerning linear ZZ functions that 
use higher-order beam theories, as in Vidal and Polit's 
work [18], which combines Murakami's ZZ function with 
the higher-order Touratier beam approach [5] (see Table 1).

2.3 Governing equations
The principle of virtual work (PVW) is used to develop the 
governing equations. The internal work of the beam is 
expressed as

� � �� � ��W dVint
V

k k k k� �� �� � � � � � � � � .	 (4)

The external work performed, as shown in Fig. 1, is 
given by
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where Tx∆ = Tx(x∆, z), Tz∆ = Tz(x∆, z) (with ∆ or b) are trac-
tions, A is the cross-section area, L is the length, V is vol-
ume of the beam, and q(x) is a loading function.

The functional for the problem is obtained through the 
PVW (δWint = δWext) and Eqs. (1)–(3), with variables field 
u0(x), w(x), w'(x), ϕ(x) and ψ(x). The Euler equation is 
obtained from the first variation of the functional, Eq. (6), 
together with its boundary conditions shown in Eq.  (7). 
Boundary variables with a slash above it identify as pre-
scribed values.
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Where

Table 1 Shape functions for unified high-order beam theory
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2.4 Analytical solution
The Navier method was used to solve the differential equa-
tions, where the response fields are approximated using 
periodic functions. The boundary conditions for a simply 
supported beam are given by Eq. (9) and the solution is 
assumed to conform to Eq. (10).
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3 Results and discussion
The results are presented in a dimensionless form accord-
ing to Eq. (11) [19]. In this study, the shear stress field was 
obtained using equilibrium equations according to the 
procedure described by Reddy [20].
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The following elastic properties were used for the fiber- 
reinforced laminated beam:

E MPa E MPa G MPa G MPa

v v
x y xy yz

xy yx

= = = =
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0 25
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The response fields (displacements and stresses) were 
analyzed for all higher-order beam theories adopted in this 
study (RED90, KRU49, SOL92, KAR03, and AKA07) in 
combination with the ZZ function proposed in this study 
(SIN-ZZ). The results obtained were compared with those 
of Vidal and Polit [18]. All analyses were performed for 
a simply supported beam subjected to sinusoidal load on 
surface z = h. The load is expressed as:
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L

q q j
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0 1
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The analytical solutions of the theory of elasticity devel-
oped by Pagano [19] were adopted as a reference.

3.1 Slenderness analysis (S Parameter) 
The results of the displacement and stress fields were ana-
lyzed as the S parameter, Eq. (11), varied (from thick to thin) 
for a laminated composite beam formed by three layers of 
equal thickness and stacked in a 0°/90°/0° configuration. 
Tables 3–6 present, the maximum values and the relative 
error, for the transverse displacement, axial displacement, 
normal stress, and shear stress, respectively, obtained by 
Pagano [19], Vidal and Polit [18], and this study. Information 
in parentheses in tables refers to relative error. The results of 
the proposed method were obtained for different combina-
tions of higher-order beam theories and ZZ-SIN function.

Given the combinations of the ZZ-SIN function and dif-
ferent higher-order kinematics, Tables 3–5 show minor rel-
ative errors for models SOL92, KRU49, and RED90 when 
the fields of axial displacement, transverse displacement, 
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and normal stress were analyzed. Regarding the analysis 
of the shear stress field (Table 6), SOL92, KRU49, RED90, 
and TOU91 resulted in lower relative errors among the 
combinations. As the S parameter increased, no signif-
icant change was observed in the relative errors for the 
combinations of ZZ-SIN and the higher-order beam theo-
ries. As shown in Tables 3–6, the ZZ-SIN+SOL92 combi-
nation had the lowest, or one of the lowest, values for the 
relative error. Tables 3–5 reveal that the ZZ-SIN+SOL92 
combination presents significantly minor relative errors 
(error ≤ 1.09%) compared with the errors achieved by 
a previous model [18] (error ≤ 6.32%). For the shear stress 
field (Table  6), Vidal and Polit's approach [18] resulted 
in minor relative errors (error ≤ 0.10%) compared to the 
ZZ-SIN+SOL92 model (error ≤ 1.13%).

3.2 Analysis of number of layers
According to the results presented in Tables 3–6, the mod-
els of higher-order beams with the ZZ function (ZZ-SIN) 
exhibited significant differences in the results of the 
response fields of interest for thick beams (S = 4). It was 
observed that the SOL92 theory showed minor relative 
errors in most analyses, which justifies the study of the 
efficiency of the ZZ-SIN+SOL92 model in comparison 
with an alternative solution [18] as the number of layers 
is varied. Table 7 presents the stacking configuration for 
laminates with three, five, six, and eleven layers. In this 
analysis, the reference values are acquired from the theory 
of elasticity proposed by Pagano [19].

Table 5 Maximum values for normal stress, σ(L/2, h)

S 4 10 20 40

Ref. [19] 18.6791 73.6088 263.1913 1019.6630

ZZ-SIN + 
RED90

18.4999
(0.96%)

72.8850
(0.98%)

262.2633
(0.35%)

1018.7429
(0.09%)

ZZ-SIN + 
KRU49

18.4999
(0.96%)

72.8850
(0.98%)

262.2633
(0.35%)

1018.7429
(0.09%)

ZZ-SIN + 
TOU91

18.7510
(0.38%)

73.2120
(0.54%)

265.2575
(0.78%)

1019.0896
(0.06%)

ZZ-SIN + 
SOL92

18.4761
(1.09%)

72.8544
(1.02%)

262.2313
(0.36%)

1018.7106
(0.09%)

ZZ-SIN + 
KAR03

18.9745
(1.58%)

73.5086
(0.14%)

262.9174
(0.10%)

1019.4052
(0.03%)

ZZ-SIN + 
AKA07

18.9743
(1.58%)

73.1129
(0.67%)

262.5018
(0.26%)

1018.9843
(0.07%)

Model [18] 19.4954
(4.37%)

74.9538
(1.83%)

264.5566
(0.52%)

1021.0965
(0.14%)

Table 6 Maximum values for shear stress, τ(0,0)

S 4 10 20 40

Ref. [19] 1.4299 4.2381 8.7493 17.6447

ZZ-SIN + 
RED90

1.4132
(1.17%)

4.2386
(0.01%)

8.7492
(0.01%)

17.6419
(0.02%)

ZZ-SIN + 
KRU49

1.4132
(1.17%)

4.2386
(0.01%)

8.7492
(0.01%)

17.6419
(0.02%)

ZZ-SIN + 
TOU91

1.4071
(1.59%)

4.2348
(0.08%)

9.0797
(3.77%)

17.6408
(0.02%)

ZZ-SIN + 
SOL92

1.4138
(1.13%)

4.2389
(0.02%)

8.7494
(0.01%)

17.6419
(0.02%)

ZZ-SIN + 
KAR03

1.4019
(1.96%)

4.2314
(0.16%)

8.7453
(0.05%)

17.6399
(0.03%)

ZZ-SIN + 
AKA07

1.4018
(1.97%)

4.2359
(0.05%)

8.7477
(0.02%)

17.6411
(0.02%)

Model [18] 1.4284
(0.10%)

4.2400
(0.04%)

8.7493
(0.00%)

17.6418
(0.02%)

Table 3 Maximum values for transverse displacement, w(L/2)

S 4 10 20 40

Ref. [19] −2.8919 −0.9307 −0.6172 −0.5367

ZZ-SIN + 
RED90

−2.8624
(1.02%)

−0.9286
(0.19%)

0.617
(0.03%)

−0.5377
(0.19%)

ZZ-SIN + 
KRU49

−2.8624
(1.02%)

−0.9289
(0.19%)

−0.6174
(0.03%)

−0.5377
(0.19%)

ZZ-SIN + 
TOU91

−2.8470
(1.55%)

−0.9282
(0.27%)

−0.6173
(0.02%)

−0.5377
(0.19%)

ZZ-SIN + 
SOL92

−2.8636
(0.98%)

−0.9289
(0.19%)

−0.6174
(0.03%)

−0.5377
(0.19%)

ZZ-SIN + 
KAR03

−2.8285
(2.19%)

−0.9269
(0.41%)

−0.6171
(0.02%)

−0.5376
(0.18%)

ZZ-SIN 
+AKA07

−2.8280
(2.20%)

−0.9285
(0.24%)

−0.6174
(0.03%)

−0.5377
(0.19%)

Model [18] −2.8026
(3.08%)

−0.9193
(1.22%)

−0.6151
(0.34%)

−0.5371
(0.07%)

Table 4 Maximum values for axial displacement, u(L/h)

S 4 10 20 40

Ref. [19] −0.9330 −9.3487 −66.7796 −518.0090

ZZ-SIN + 
RED90

−0.9422
(0.99%)

−9.2800
(0.73%)

−66.7848
(0.007%)

−518.8415
(0.16%)

ZZ-SIN + 
KRU49

−0.9422
(0.99%)

−9.2800
(0.73%)

−66.7848
(0.007%)

−518.8415
(0.16%)

ZZ-SIN + 
TOU91

−0.9550
(2.36%)

−9.3216
(0.30%)

−67.5473
(1.15%)

−519.0181
(0.19%)

ZZ-SIN + 
SOL92

−0.9410
(0.89%)

−9.2761
(0.78%)

−66.7766
(0.004%)

−518.8250
(0.16%)

ZZ-SIN + 
KAR03

−0.9663
(3.57%)

−9.3594
(0.11%)

−66.9514
(0.26%)

−519.1788
(0.22%)

ZZ-SIN + 
AKA07

−0.9664
(3.58%)

−9.3090
(0.42%)

−66.8455
(0.098%)

−518.9645
(0.18%)

Model [18] −0.9929
(6.32%)

−9.5434
(2.08%)

−67.3688
(0.88%)

−520.0402
(0.39%)
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The relative error of the maximum values and weighted 
average percentage error (WAPE) (shown in Eq. (13)) were 
used as metrics for the difference between the reference 
value, represented by X, and the calculated value, repre-
sented by x, either by the ZZ-SIN+SOL92 model or by 
that of Vidal and Polit [18].

W AP E
x X

X
j

n
j j

j

n
j

. . . .�%� � �
�

�

�

�
�

100
1

1

	 (13)

The results for the transverse displacement field, w(x), 
measured using the WAPE metric along the longitudinal 
axis, and the relative error for the maximum value of the 
transverse displacement, w(L/2), are presented in Table 8. 
Both the WAPE norm and the relative error for the maxi-
mum value of the transversal displacement have the same 
error percentage, with the ZZ-SIN+SOL92 model show-
ing errors that are significantly lower than those of the 
model proposed by Vidal and Polit [18]. Moreover, with 
an increase in the number of layers, the errors of the pre-
vious model [18] tend to increase tremendously, whereas 
the model proposed remains almost stable at low values.

For the axial displacement field analysis, the WAPE 
norm was applied to the cross section at x = L, and the 
relative error for the maximum value was obtained at 
x = L and z = h. As shown in Table 9, the ZZ-SIN+SOL92 
model had a maximum error of 12.22%. For the model 
proposed by Vidal and Polit [18], the maximum error was 
33.98% (both results were for a laminate with five layers). 

Regardless of the number of layers, the ZZ-SIN+SOL92 
model had a  minor error compared with the other 
model [18], according to either the WAPE norm or the rel-
ative error for the maximum value of axial displacement. 
Analysis of the error referring to the maximum value of 
the axial displacement revealed that the ZZ-SIN+SOL92 
model performed even better than that proposed by Vidal 
and Polit  [18], as demonstrated by a maximum error of 
1.77% for ZZ-SIN+SOL92 in comparison to the other 
model [18], which had a maximum error of 15.26%.

The analysis of the results in Tables 10 and 11 is sim-
ilar to that discussed previously. For normal and shear 
stresses, the ZZ-SIN+SOL92 model had a minor error 
compared with the other model [18]. This performance 
was obtained by calculating the error for a given section 
(the WAPE metric) or the error for the maximum value 
of the shear stress or normal stress (relative error). Only 
for the value of maximum shear stress did the model pro-
posed by Vidal and Polit [18] have better performance for 
laminates with three layers; however, when the number of 
layers increased, the ZZ-SIN+SOL92 model resulted in 
minor errors, with less influence of the number of layers 
compared with the previous model [18].

Table 7 Stacking-sequence terminology

N° layers Stacking-sequence

3 [0°/90°]s

5 [0°/90°/0°]s

6 [0°/90°/0°/90°/0°/90°]t

11 [0°/90°/0°/90°/0°/90°]s

Table 8 Maximum values and WAPE for transverse displacement

w(x) w(L/2)

N° 
layer

ZZ-SIN + 
SOL92

Model 
[18] Ref. [19] ZZ-SIN + 

SOL92
Model 

[18]

3 0.98% 3.09% −2.8919 −2.8636
(0.98%)

−2.8026
(3.08%)

5 1.25% 9.25% −3.0516 −3.0135
(1.25%)

−2.7693
(9.25%)

6 2.08% 11.12% −3.8492 −3.7689
(2.08%)

−3.4211
(11.12%)

11 0.86% 7.24% −3.2184 −3.1908
(0.86%)

−2.9855
(7.24%)

Table 9 Maximum values and WAPE for axial displacement

u(L, z) u(L, h)

N° 
layer

ZZ-SIN + 
SOL92

Model 
[18] Ref. [19] ZZ-SIN + 

SOL92
Model 

[18]

3 7.42% 12.66% −0.9330 −0.9410
(0.86%)

−0.9929
(6.32%)

5 12.22% 33.98% −0.9360 −0.9526
(1.77%)

−1.0251
(9.51%)

6 9.53% 27.77% −1.1742 −1.1645
(0.83%)

−1.3233
(15.26%)

11 5.92% 19.25% −1.0247 −1.0212
(0.34%)

−1.1601
(13.21%)

Table 10 Maximum values and WAPE for normal stress

σ(L/2, z) σ(L/2, h)

N° 
layer

ZZ-SIN 
+ SOL92

Model 
[18] Ref. [19] ZZ-SIN 

+ SOL92
Model 

[18]

3 5.65% 9.32% 18.6791 18.4761
(1.09%)

19.4954
(4.37%)

5 6.27% 17.41% 18.7379 18.7039
(0.18%)

20.1271
(7.41%)

6 6.82% 23.68% 23.4261 22.8642
(2.40%)

26.5724
(13.43%)

11 4.29% 18.04% 20.4828 20.0509
(2.11%)

22.7777
(11.20%)
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Figs. 3 and 4 show graphs for the variation in the 
response fields analyzed for a thick beam (S = 4) formed 
by five layers, according to the configuration shown in 
Table 7. Figs. 3(a) and 3(b) show graphs for the transverse 
displacement along the longitudinal axis and the axial dis-
placement along the cross section at x = L. Figs. 4(a) and 
4(b) show the normal stress field for the cross section at 
x = L/2 and the shear stress for the cross section at x = 0, 
respectively. Figs. 3 and 4 show that the ZZ-SIN+SOL92 
model agrees better with the reference values for all the 

laminates. The Vidal and Polit model [18] resulted in sig-
nificant discrepancies, mainly for the central laminate.

4 Conclusions
A higher-order ZZ function was coupled with several refined 
beam theories [3–8] to analyze laminated composite beams. 
The variation from thick to thin beams, represented by the S 
parameter, and the number and stacking of layers for a sim-
ply supported beam subjected to sinusoidal loading were 
analyzed to validate the proposed formulation. The results 
presented in Tables 3–6 show that higher-order beam theo-
ries influence the response fields when the beam is moder-
ately to significantly thick. Furthermore, the ZZ-SIN+SOL92 
model showed lower relative errors for most of the analy-
ses as the S parameter varied, and with significantly bet-
ter results than those of Vidal and Polit [18] were obtained 
when comparing with the reference values of Pagano [19].

For a thick laminated beam (S = 4), the amount and 
configuration of layer stacking influenced the analyzed 
response fields. According to both the WAPE norm and 
the relative error (the latter referring to the maximum 
value), the ZZ-SIN+SOL92 model presented significantly 

Table 11 Maximum values and WAPE for shear stress

τ(0, z) τ(0, 0)

N° 
layer

ZZ-SIN 
+ SOL92

Model 
[18] Ref. [19] ZZ-SIN 

+ SOL92
Model 

[18]

3 1.39% 1.41% 1.4299 1.4138
(1.13%)

1.4284
(0.10%)

5 1.51% 3.32% 1.6807 1.6729
(0.46%)

1.5244
(9.30%)

6 2.19% 11.73% 1.7501 1.7895
(2.25%)

1.5819
(9.61%)

11 0.90% 5.93% 1.6248 1.6397
(0.92%)

1.5030
(7.49%)

Fig. 3 (a) Transverse displacement along the longitudinal axis and (b) axial displacement along the cross section at x = L, both for S = 4

(a)

Fig. 4 (a) Normal stress along the cross section at x = L/2 and (b) shear stress along the cross section at x = 0, both for S = 4

(a)

(b)

(b)
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minor errors than those of the model proposed by Vidal 
and Polit [18], as shown in Tables 8–11. Moreover, the most 
significant discrepancies between the results of the ana-
lyzed models and the reference value occurred in the inner 
layers, as shown in Figs. 3 and 4 for a five-layer laminate.
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