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Abstract

In this paper, the purpose is to present an efficient graph method for the analysis of truss structures using the force method and 

compare the computational time with that of the stiffness approach. Naturally, the results of the optimization and the accuracy of 

calculation for both methods are identical, but the calculation time for the force method is less when the degree of static indeterminacy 

(DSI) is smaller than the degree of kinematic indeterminacy (DKI) of the structure. Three examples are designed, and optimization has 

been performed using the ECBO algorithm in MATLAB.
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1 Introduction
Analysis of structures can be performed by either force 
method or displacement approach. The force method is 
less developed due to its difficulty in generating a suitable 
statical basis, while the stiffness method is more amenable 
for computation. For this reason, some of the advantages 
of force method has been ignored in non-linear analysis 
and optimization, Kaveh [1].

Our criterion for selecting the structural analysis among 
these two methods is the degree of uncertainty of the struc-
ture. The DSI and DKI of a structure is calculated, and the 
one which is smaller the corresponding method is chosen 
for the analysis. (Force method for DSI and the displace-
ment method for the case when DKI is smaller) [1].

In this paper, examples of trusses are designed that are 
analyzed by both force and displacement methods. The 
selected examples have a lower DSI than DKI, and thus 
the analysis time reduction and memory saving in the 
force method have been evident. 

2 Force method
Force method or continuous deformation method is based 
on assuming the equilibrium to hold and proceed by sat-
isfying the compatibility. In this method, internal forces 
are obtained considering some member forces and support 
reactions as redundant.

Five different approaches exist for the force method of 
structural analysis, which are known as: 

1.	 Topological force methods,
2.	Algebraic force methods, 
3.	 Mixed algebraic-combinatorial force methods, 
4.	 Integrated force method.
5.	 Graph-theoretical force methods.

Topological force methods have been developed by 
Henderson [2] and Henderson and Maunder [3] for rigid- 
jointed skeletal structures using manual selection of the 
cycle bases of their graph models [4]. Methods suitable for 
computer methods are due to Kaveh [5–7]. The topologi-
cal methods are generalized to cover all types of skeletal 
structures, such as rigid-jointed frames, pin-jointed pla-
nar trusses and ball-jointed space trusses by Kaveh [8], 
Cassell, [9] and Kaveh [10].

Algebraic methods have been developed by Denke [11], 
Robinson and Haggenmacher [12], Topçu [13], Kaneko 
et al. [14], Soyer and Topçu [15] and mixed algebraic-to-
pological methods have been suggested by Gilbert and 
Heath [16], Coleman and Pothen [17, 18], and Pothen [19]. 
The integrated force method is due to Patnaik [20, 21], 
in which the equilibrium equations and the compatibil-
ity conditions are satisfied simultaneously in terms of the 
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force variables. Simultaneous analysis and design by force 
method can be found the work of Kaveh and Rahami [22].

2.1 Formulation
Consider a structure S with M members and N nodes, which 
is γ(S) times statically indeterminate. Select γ(S) indepen-
dent unknown forces as redundant. These unknown forces 
can be selected from external reactions and/or internal 
forces of the structure [23]. Denote these redundant by:

q q q q s

t
� �� �� �1 2

, , , � .	 (1)

Remove the constraints corresponding to redundant, 
in order to obtain a statically determinate structure, 
known as the basic (released or primary) structure of S. 
Obviously, a basic structure should be rigid. Consider the 
joint loads as,

p p p pn
t

�� �1 2
, , , ,	 (2)

where n is the number of components for applied nodal 
loads. Now the stress resultant distribution r due to the 
given load p for a linear analysis by the force method can 
be written as

r B p B q� �
0 1

.	 (3)

Where B0 and B1 are rectangular matrices, each having 
m rows, and n and γ(S) columns, respectively, m being the 
number of independent components for member forces. 
B0p is known as a particular solution, which satisfies 
equilibrium with the imposed load and B1q is a comple-
mentary solution formed from a maximal set of indepen-
dent self-equilibrating stress systems (S.E.Ss), known as a 
statical basis [24].

Special and complementary solutions can be obtained 
from a basic structure, although it is not necessary to do 
so, and the special solution can be obtained from one basic 
structure and the complementary solution from another 
structure.

In fact, when the basic structure used in the special 
and complementary solutions are the same, it is equiva-
lent to choosing the cycles of the structure from among 
the elementary cycles, although such a basis satisfies the 
equations and it is easy to find it, but it is not an effective 
method for analysis. Because we are looking for cycles 
that satisfy certain conditions [1].

Compatibility conditions are written as follows for each 
member using the deformation load relationship:

u F r F B p F B qm m m� � �
0 1

,	 (4)

where Fm is the stiffness of the unassembled matrix, which 
is obtained by superimposing the shape change load rela-
tions of each member in the diameter of the matrix.

The previous relation (Eq. (4)) can be written in the 
matrix form as

u F B B
p
qm� � � �� �� �� ��
�

�
�
�

�
�0 1

.	 (5)

Using the principle of virtual work, we have:
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By previous combining relations (Eqs. (5) and (6)), one 
obtains the following relation:
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In relation (Eq. (7)), (V0) includes the displacements 
caused by the applied loads, p, and Vc includes the change 
of the displacements of the cuts 1 in the base structure. 
By performing the operation, we have:
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Thus

V B F B p B F B qt
m

t
m0 0 0 0 1

� � � � � � ,	 (9)

V B F B p B F B qc
t
m

t
m� � � � � �1 0 1 1

.	 (10)

The compatibility condition will indicate that the 
change of the displacements of the cuts should be equal 
to zero.

Vc = 0 	 (11)

By combining two relations (Eqs. (10) and (11)), leads to

q B F B B F B pt
m

t
m� � � ��

( )
1 1

1

1 0 .	 (12)

By substituting the obtained value for q in relation 
(Eq. (9)), we have:

V B F B B F B B F B pt
m

t
m

t
m0 0 0 1 1
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�

�
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�
( ) .	 (13)

Now we get the stress distributions in the structure as

r B B B F B B F B pt
m

t
m� ��

�
�
�

�
0 1 1 1

1

1 0
( ) .	 (14)

The structural flexibility matrix is often defined as 
G = B1

tFmB1 [23–25].
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2.2 Analysis process
1.	 Form B0 and B1 matrices.
2.	Calculate the matrices B0

tFmB0, B1
tFmB0, G = B1

tFmB1.
3.	 Calculate the matrix G–1 = (B1

tFmB1)
–1.

4.	 Form the matrix = (B1
tFmB1)

–1 B1
tFmB0, which is 

obtained from the inverse product of the matrix G in 
the matrix B1

tFmB0.
5.	 By forming B1Q and adding B0 to it, the matrix B = 

B0 + B1Q is obtained.
6.	 Now the internal forces are obtained as r = Bp.

2.3 Optimal analysis of structures
For an optimal analysis by the force method, the flexibility 
matrix G should have the following properties [5]:

1.	 Sparse,
2.	 well-conditioned,
3.	 It should be well-structured (for example, it has a small  

bandwidth).

2.4 Force method for the analysis of planer trusses
In the force method for a truss, B0 and B1 should first be 
obtained. There are two graph theory methods to obtain 
these matrices. The first method uses associate graph, and 
the second method employs a bipartite graph [8]. In  this 
article, the associate graph method is used. A similar 
method for the analysis has recently been applied to rigid- 
jointed frames by Kaveh and Zaerreza [26]

2.4.1 Associate graphs for selection of a suboptimal 
general cycle basis 
The associate graph of S, denoted by A(S), is a graph whose 
nodes are in a one-to-one correspondence with triangular 
panels of S, and two nodes of A(S) are connected by a mem-
ber, if the corresponding panels have a common member 
in S [8] and [27].

If S has some cut-outs, as shown in Example 3, then 
its associate graph can still be formed, provided that each 
cut-out is surrounded by triangulated panels.

For trusses containing adjacent cut-outs, a cut-out with 
cut-nodes in its boundary, or any other form violating the 
above-mentioned condition, extra members can be added to 
S. The effect of such members should then be included in the 
process of generating its self-equilibrating stress systems.

A maximal set of independent γ-cycles of S is defined 
as a generalized cycle basis (GCB) of S. A maximal set 
of independent fundamental γ-cycles, is termed a funda-
mental generalized cycle basis of S, Refs. [8] and [27]. 
For example, consider the truss shown in Fig. 1.

The process of obtaining matrices B0 and B1 utilizing 
the associate graph method is as follows:
Step 1:	Construct the associate graph A(S) of S. 
Step 2:	Select a mesh basis of A(S), using an appropriate 

cycle selection algorithm. 
Step 3:	Select the γ-cycles of S corresponding to the cycles 

of A(S). 
Step 4:	Formation of self-equilibrium systems by extracted 

according to the cycles formed in the associated 
graph.

Step 5:	After the formation of self- equilibrium systems, 
a statical basis with localized self-equilibrating 
stress systems will be obtained [27].

(a)

(b)

(c)
Fig. 1 A planar truss S, associated graph of S and the elements 
of a GCB of S; a) A planar truss S, b) Associated graph of S, 

c) The elements of a GCB of S
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3 Optimization algorithms 
Different algorithms are available for optimization with 
various applications [26, 28–32]. 

3.1 ECBO
Colliding Bodies Optimization (CBO) was developed by 
Kaveh and Mahdavi [33] and improved by Kaveh and 
Ilchi Ghazaan [34] as the Enhanced Colliding Bodies 
Optimization (ECBO) which uses a memory to save 
a number of historically best CBs and utilizes a mecha-
nism to escape from local optima.

The initial position of all objects (CBs) in an n-dimen-
sional space is randomly determined:

x x rand x x k nk MIN MAX MIN
0

1 2� � � �� � � �, , , , .	 (15)

Every collision object has a certain momentum, which 
is defined as follows:

Mass
func k
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n
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1
1 2

1
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To select the objects, CBs are sorted according to their mass 
in descending order, and we divide them into 2 equal groups:

1. Stationary objects,
2. Moving objects.
Moving objects collide with stationary objects to improve 

their position and move them to a better position. The speed 
of all objects before moving and collision is V(i).

V k n
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Velocity of static and moving objects after collision:
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� � �1 iter
iterMax

.	 (21)

New position of objects:

x x random V k n
k
new

k k� � � � � �, , , ,1 2
2

,	 (22)

x x random V k n n nk
new
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�
2

2
1
2
2, , , , .	 (23)

The parameter pro is selected from the interval (0, 1). 
This parameter determines whether a component of each 
CB should be changed or not. For each collision object, 
Pro is compared with rni. Here, rni is a random number 
between (0,1) which is uniformly distributed. If rni < pro, 
a dimension of the CB is randomly selected, and its value 
is reconstructed as follows:

x x rand x xij j min j MAX j MIN� � � �� �, , , .	 (24)

Flowchart of the ECBO is shown in Fig. 2, [33].
In the current optimization problem, the goal is to min-

imize the weight of the steel used while satisfying the reg-
ulatory limits of member tension and member slenderness. 
In addition to stress, there are several behavioral constraints 
that must be evaluated according to the design code. This 
is a numerically cumbersome operation, especially for 
large structures when no analytical method can be applied 
directly. On the other hand, the existing structural pro-
files are practically limited to a specific discrete list, which 

Fig. 2 Flowchart of the ECBO algorithm [33]
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generally makes the discrete optimization problem more 
complicated than the continuous one. For this purpose, the 
problem has been specialized with discrete variables, i.e., 
the cross-section number of the truss members, and pro-
grammed in the MATLAB environment. The continuous 
values that may appear during the execution are rounded to 
correct variables and decoded before analyzing the struc-
ture. The vector of design variables for a structure with 
member group is given according to relation (Eq. (25)):

X x i mi� � �, , , ,1 2 .	 (25)

Then, the volume of the structure is calculated from the 
internal multiplication of the length vector of the members, 
that is, L, in their cross-sectional area A, and the optimi-
zation of the weight of the skeleton is formulated with the 
help of Eq. (26) with the density under constraints.

Minw X L A x� � � � � � ��� 	 (26)

S t
g x

x x x
j

imin i imax
. .

� � �
� �

�
�
�

0
	 (27)

The functions including the limits of stress, displace-
ment and allowable slenderness are presented in the form 
of relations (Eqs. (28) to (29)).

g k Nk k

k allowable
d�

�
�

�
� �

� � � �1 0 1 2, , , , 	 (28)

g k Nk k

k allowable
d�

�
�

�
� �

� � � �1 0 1 2, , , , 	 (29)

σ is member tension, Nd is number of members and λ is 
member slenderness.

4 Examples
In this section, 3 examples of planar trusses are designed 
and analyzed by the force and displacement methods. The 
examples have a lower DSI than DKI, and as shown in the 

following results, the analysis time reduction and memory 
saving in the force method are evident. 

4.1 Example 1: A 96-bar planar truss
The 96-bar plane truss is shown in Fig. 3. The number of 
nodes of the truss is 43. The elastic modulus is 210 GPa. 
The bars are categorized into 11 groups. For this truss the 
DSI = m – 2n + 3 = 13 and DKI = 2n – 3 = 83. The num-
ber of cycles in the associated graph for this truss is 13, 
and the dimensions of B1 matrix are 96 × 13. The number 
of degrees of freedom for the applied loading is 13. Thus, 
the dimensions of the B0 matrix are also 96 × 13. Table 1 
shows the list of the available sections for the trusses. 
Fig. 4 shows the truss with its associate graph. 

Table 1 List of the available sections for the trusses models

Section 
ID

Section 
Name

Area 
(10–4m2)

Section 
ID

Section 
Name

Area 
(10–4m2)

1 W12x26 49.35 19 W10x77 145.81

2 W8x28 53.23 20 W12x79 149.68

3 W12x30 56.71 21 W12x87 165.16

4 W8x31 58.9 22 W12x96 181.94

5 W10x33 62.65 23 W14x99 187.74

6 W8x35 66.45 24 W10x100 189.68

7 W10x39 74.19 25 W21x101 192.26

8 W8x40 75.48 26 W27x102 193.55

9 W14x43 81.29 27 W24x103 195.48

10 W12x45 85.16 28 W24x104 197.42

11 W8x48 90.97 29 W12x106 201.29

12 W10x49 92.9 30 W12x120 227.74

13 W12x53 100.64 31 W12x136 257.41

14 W10x54 101.94 32 W12x152 288.38

15 W12x58 109.68 33 W12x170 322.58

16 W10x60 113.55 34 W12x190 360

17 W12x65 123.23 35 W12x210 398.69

18 W12x72 136.13

Fig. 3 Geometry and the member grouping of the 96-bar truss
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Fig. 5 shows the pattern of B1 × B1' matrix, the dimen-
sions of this matrix are 96 × 96, and its non-zero number 
is 968. The non-zero number of B1 matrix is 114.

Optimization with ECBO algorithm was performed 
for the analysis of the truss with two methods of force 
and displacement, and as expected, similar answers were 
obtained. The convergence diagrams of the responses 
are shown in Fig. 6, and the optimum list of sections and 
results are shown in Table 2 for the 96-member truss.

Comparison of optimization time with two methods of 
forces and displacement are obtained as shown in Fig. 7. 
The optimization time with the force method is signifi-
cantly less than that of the displacement method.

4.2 Example 2: A 194-bar planar truss
The 194-bar plane truss is shown in Fig. 8. The number of 
nodes of the truss is 81. The elastic modulus is 210 GPa. 
The bars are categorized into 8 groups. The DSI = 35 and 
DKI = 159. Considering that the number of regional cycles 
in the associated graph for this truss is 35, then the dimen-
sions of B1 matrix are 194 × 35. The number of degrees 
of freedom in which the loading is applied is 12. Thus, 
the dimensions of the B0 matrix are also 194 × 12. Fig. 9 
shows the truss with its associate graph.

Fig. 4 A 96-bar truss and the associated graph of the truss

Fig. 5 Pattern of B1 × B1' matrix for the 96-bar truss with 968  
non-zero entries

Fig. 6 Convergence curves for optimization of the 96-bar truss 

Table 2 Results of the optimization for the 96-bar truss

Group number Displacement 
method No. Section

Force method No. 
Section

of Element 23 34

1 15 17

2 18 12

3 13 11

4 1 1

5 18 20

6 34 35

7 28 31

8 25 11

9 35 35

10 1 1

11 9417810 9400850

Best weight (kg) 10225500 10361000

Average weight (kg) 807690 960150

Std (kg)

Fig. 7 Comparison of the time for optimization using force method and 
displacement method for the 96-bar truss
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Fig. 8 Geometry and member grouping of the 194-bar truss

Fig. 9 A 194-bar truss and the associated graph of this truss



344|Kaveh and Khavaninzadeh
Period. Polytech. Civ. Eng., 67(2), pp. 337–348, 2023

The self-equilibrium systems extracted by forming the 
associated graph and used to obtain matrix B1 as shown in 
Fig. 10.

The pattern of B1 × B1' matrix, the dimensions of this 
matrix are 194 × 194 and its 2588 non-zero entries are shown 
in Fig. 11. 

Results of the convergence for the ECBO algorithm with 
500 iterations and 50 population number for the 194 mem-
bers truss are shown in Fig. 12 with both analysis methods. 
The optimal sections and results are provided in Table 3.

In the 194-bar truss, as in the previous example, the 
time to perform the analysis with the force method was 
much less than that of the displacement method, which is 
shown graphically in Fig. 13.

4.3 Example 3: A 311-bar planar truss
The third example in Fig. 14 is a truss with 311 members 
and 131 nodes. Fig. 15 shows the truss with its associate 
graph. This example has a fundamental difference from the 
previous two examples, and that is the existence of a cut out 

in the truss. The presence of a cut out that surrounded by 
triangular plates forms a type of cycle. Since  of A(S) corre-
sponds to one γ-cycle of S, it is called a type I cycle, denoted 
by CI. Typical γ-cycles of S are shown by continuous lines, 

Fig. 10 Samples of self-equilibrium systems for the 194-bar truss

Fig. 11 Pattern of B1 × B1' matrix for the 194-bar truss with 2588 non-
zero entries

Fig. 12 Convergence curves for the 194-bar truss using ECBO

Table 3 Optimization results for 194-bar truss

Group number
Of Element

Displacement method
No. Section

Force method
No. Section

1 35 35

2 35 35

3 18 19

4 35 35

5 28 28

6 10 12

7 33 32

8 14 14

Best weight (kg) 2195620 2280400

Average weight (kg) 2258400 2298120

Std (kg) 62780 17720

Fig. 13 Comparison diagram of optimization time in the force method 
and displacement method in the 194-bar truss
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and their γ-chords are depicted in dashed lines, it is called 
a type III cycle, denoted by CIII. In Fig. 16(a), a triangu-
lated truss and its associate graph, are shown and Fig. 16(b) 
shows a truss unit with one cut-out. 

In this example, DSI = 55 and DKI = 259. Therefore, the 
force method is preferred in this example. Loads are applied 
at 20 nodes as shown in Fig. 16. Thus, the dimensions of 
the B0 matrix are also 311 × 20. The number of CI cycles in 
the associated graph for this truss is 49 and CIII cycles is 3, 
and we also have 3 degrees of external indeterminacy, then 
the dimensions of B1 matrix are 311 × 55. The elements of 
this truss, shown in the Fig. 16, are divided into 12 groups.

Self-equilibrium systems are extracted using to the 
cycles formed for the associated graph of the truss as 
shown in Fig. 17.

Fig. 18 shows the pattern of B1 × B1' matrix. The dimen-
sions of this matrix are 311 × 311 and its non-zero entries 
is 17287. 

The results of the convergence using ECBO algorithm 
for the 311-members truss is shown in Fig. 19 with both 
analysis methods. The optimal sections and the other results 
are given in Table 4.

CPU time for the truss with 311 members was also 
obtained for both analysis methods, which was signifi-
cantly lower for the force method than the displacement 
method for this truss are similar to the previous two exam-
ples which are shown graphically in Fig. 20.

5 Conclusions
The purpose of this article is to compare two structural 
analysis methods for trusses, force method and displace-
ment method. The force method in this article is per-
formed using graph theory and utilizing the associate 

Fig. 14 Geometry and member grouping of the 311-bar truss

(a)                                                           (b)
Fig. 16 Two different types of cycles; (a) A type CI cycle,  

(b) A type CIII cycle

Fig. 15 A 311 bar truss and associated graph of the 311-bar truss
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graph. The structural weight was minimized subject to 
LRFD constraints of trusses. For this purpose, ECBO 
optimization algorithm was utilized to deal with section 
indices as discrete design variables. The optimal weight 
values for all 3 trusses were close to each other for both 
methods. However, the noteworthy point was the compar-
ison of CPU time in two analysis methods. The amounts 
of CPU time in all 3 trusses with the force method were 
less than the displacement method, and with the increase 
in the difference between DSI and DKI, the difference in 
CPU time is increased. The comparison of these results is 
provided in Fig. 21.

Conflict of interest
No potential conflict of interest was reported by the authors.

Fig. 18 Pattern of B1 × B1' matrix for the 311-bar truss with 17287 non-
zero entries

Fig. 19 Convergence curves for optimization of the 311-bar truss

Table 4 Results of the optimization for the 311-bar truss

Group number
of Element

Displacement method
No. Section

Force method
No. Section

1 19 30

2 35 35

3 35 34

4 34 35

5 35 35

6 30 31

7 17 30

8 35 35

9 18 29

10 20 21

11 35 35

12 1 1

Best weight (kg) 6935518451 7011771617

Average weight (kg) 7024930000 7265420000

Std (kg) 89411549 253648383

Fig. 20 Comparison of the optimization time in force method and 
displacement method for the 311-bar truss

Fig. 17 Sample of self-equilibrium systems of the 311-bar truss
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Fig. 21 Comparison of optimization time in the force method and the displacement method for three trusses
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