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Abstract

The main challenging issue in concrete beam strengthening with FRP plates is the insurance of their joint performance. As been 

reported, the external load is mainly the primary reason for plate separation. The applied force corresponding to the moment of 

failure is called the debonding load. This load is of great importance. Besides, the determination of shear stress in the adhesive layer 

and tensile strain of the FRP plate is of the topics raised in empirical research. This study recommends using numerical methods to 

avoid the high cost of empirical studies. Here, failure concepts of the cohesive element are utilized. Horizontal and vertical springs 

are used to represent the properties of this element in which springs’ stiffness deputizes cohesive element characteristics and can be 

adjusted in three linear, nonlinear, and zero-stiffness steps. Springs’ stiffness is related to point displacements. So in an element-free 

Galerkin (EFG) method formulation, a set of springs, beam, and FRP is used to determine these displacements. Using these estimated 

nodes’ displacement values and utilizing springs’ stiffness, the unknown parameters inclouded debonding load, glue shear stress, and 

the tensile strain produced in the FRP plate can be determined. Whole calculations are coded in Matlab software. The results have 

been compared with the experimental outcomes of Kim and her colleagues’ work. These results indicate glue performance can be 

investigated through spring modeling based on the cohesive element in an EFG framework with adequate accuracy. So, the significant 

parts of an experimental setup can be avoided.
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1 Introduction
One of the critical issues in construction engineering is 
strengthening the damaged members. Various studies 
need to be executed to ensure the proper performance of 
a specific reinforcement technique, which causes immense 
costs. One of the structural strengthening methods in con-
crete buildings is to utilize the FRP plate, which has been 
widely used in recent years. Some advantages of using an 
FRP plate are increased bending strength, reduced concrete 
beam cracking, and decreased created crack width [1–4]. 
Arrangement and installation modes of FRP plates have 
various types. They are usually fitted in the tension region 
of the beam, u-shaped jacket, strengthening toward beam 
height and as longitudinal rebar [2,  3, 5–8]. One of the 
most recent studies is the article by Khalil Ibrahim and 
Movahedi Rad, in which a non-prismatic concrete beam 
with an FRP sheet is reinforced diagonally. The FRP sheet 
has strengthened concrete in terms of shear strength [9]. 

FRP materials used in conducted studies were usually car-
bon, glass, hybrid, or aramid [10, 11]. One of the funda-
mental issues of using the FRP plate is the correct rec-
ognition of the behavior and performance of the adhesive 
layer, and the function of the glue used between the plate 
and beam needs to be assured. For this reason, the glue 
stress needs to be determined so the best kind of glue can 
be selected. In this regard, limited analytical studies have 
been carried out based on the bending theory with a sim-
ple beam to determine the shear stress and the effects of 
FRP plate thickness and the adhesive layer. Experimental 
tests have been used to observe the accuracy level of ana-
lytical results [12–14]. The main goal of the present study 
is to reduce experimental costs, increase accuracy and 
confidence in the results of superseded analytical studies 
and eliminate the limits associated with boundary condi-
tions and beams geometry.
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Concrete beams strengthened with FRP plate can expe-
rience different failure modes. Several failure mechanisms 
have been identified regarding the connection between 
the plate and the concrete beam. If the glue does not have 
a problem until the debonding load is applied and no separa-
tion occurs in the interface, the beam failure happens in one 
of the modes; compressive crushing of the concrete, FRP 
plate rupture, or beam shear failure [2, 15–18]. The bend-
ing strength relations in the code of practice are proposed 
based on the coupling behavior of the concrete beam and 
FRP plate with no debonding [19, 20]. If the interacting per-
formance is not maintained, according to Fig. 1, the failure 
will be in the form of debonding in the interface. This mode 
is the most common failure reported by numerous research-
ers. It can occur due to excessive stresses applied to the glue 
or implementation problems such as improper adhesion or 
non-uniform distribution of the glue along the plate length. 
As the design codes suppose no debonding assumptions, 
this type of failure is critical [20–22]. 

To determine stresses applied to glue, also investigate 
its debonding behavior, the failure concept in the cohe-
sive element can be used. This concept was suggested by 
Dugdale and Barenblatt [23, 24]. A cohesive element has 
the potential to take into account both the linear and non-
linear behavior of the glue. For stress calculation, the rel-
ative displacement in the contact surface is needed. So, in 
the first stage, the deformation of the adhesive layer must 
be determined [25]. One of the hypotheses for simplifying 
modeling also reducing the equations is the deformation 
of the beam, and the relative deformation of the adhesive 
layer in the third dimension assumes ignorable.

During applying the load, the deformation in the surface 
of the adhesive stuck to the FRP increases more than the 
adhesive attached to the concrete side. In the early stages 
of loading, this deformation is linearly elastic. This study is 
intended to replace the adhesive layer with a set of springs 
to handle this elastic behavior. As  the load increases, 
the deformation of the adhesive layers enters softening 
(nonlinear) phase, which is called damage development. 
To equate this behavior, the stiffness of the spring assem-
bly is also assumed to be variable. As the load increases, 

the spring's stiffness decreases, and the adhesive deforma-
tion increases until, at a specific point, the spring's stiffness 
becomes zero, and separation occurs. Therefore, the main 
idea of this research is the concept of simulating the behav-
ior of the adhesive layer with a set of horizontal and ver-
tical springs. The stiffness of springs can change in three; 
linear (elastic), nonlinear (softening or damage develop-
ment), and zero-stiffness (zero stress, debonding) modes.

The Element Free Galerkin (EFG) method is a numerical 
technique for measuring nodes displacement. It uses mov-
ing least squares (MLS) functions to determine displace-
ment field and construct shape functions. 

The EFG method has quick convergence capability, 
increasing the continuity and derivative orders to the 
desired value, and is an excellent choice for simulating 
nonlinear behavior and discontinuities [26, 27]. 

Based on the defined problem, the stress values in the 
beam have been computed in a numerical framework. 
The results show the concrete does not reach the rupture 
stress before separation occurs in the FRP sheet. So, the 
effect of rebars has been omitted. If the length of the beam 
is greater, the concrete might crack early, and the rebar 
effect must be considered. It could be the subject of the next 
step of this research by changing geometric conditions.

This study presents in six sections. The first section is 
the introduction. The second section explains how the glue 
layer replaces with springs and the way their stiffness deter-
mine. The third section introduces the EFG method and 
the scheme of applying the concept of the adhesive element 
in the formulation. The fourth section notes the details of 
the numerical example, properties of the beam and materi-
als, node placement procedure, and reference experiment. 
In the fifth part, numerical results are compared with the 
experimental study of Kim and her colleagues, and in the 
sixth section, the conclusion is presented.

2 Approximating the adhesive layer with a set of springs
The main proposed idea is to replace adhesive layer behav-
ior with a set of nonlinear horizontal and vertical springs 
(Fig. 2(a)). The nature of replaced springs is depicted in 
Fig. 2(b). The stiffness of these springs is assumed constant 

Fig. 1 Debonding at the end of the FRP plate [21]
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during the elastic behavior region. In the following, after 
glue reaches the damage initiation stage, it enters the non-
linear phase and will become decremental, and finally, 
after debonding, it comes to zero.

In Fig. 2 ta is the adhesive thickness, Ga and Ea are shear 
modulus and elasticity modulus, D is the damage param-
eter and has different values, Kn and Ks are vertical and 
horizontal spring stiffness. δm

0 and δm
f are relative displace-

ments of springs in the damage threshold and the separa-
tion moment, respectively.

2.1 Determination of springs stiffness
2.1.1 Linear behavior
The behavior of equivalent springs is linear and reversible 
as far as the damage has not been initiated in the adhe-
sive layer. In these conditions, stiffness is a function of 
the elastic modulus of glue and its thickness. The stiffness 
values for horizontal and vertical springs are as below:
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uy
1 is vertical displacement at the joint boundary of 

adhesive and concrete, uy
2 is vertical displacement at the 

joint boundary of adhesive and FRP. ux
1 and ux

2 are hor-
izontal displacement at the top and bottom of the joint 
boundary, respectively. tn(x) and ts(x) are normal and shear 
stress in the adhesive layer. As the applied load increases, 
deformations rise, and the glue reaches its yield strength. 
So, the softening phase starts. 

2.1.2 Damage initiation and evolution
Damage evolution shows that spring stiffness is decreas-
ing. From a physical point of view, the adhesion property 
in the glue represents connection persistence and its struc-
tural strength. When the adhesive thickness is thin, using 
a cohesion element with softening behavior is an accept-
able assumption for describing glue strength and surfaces 
debonding [28]. Needleman expresses if the resistance 
between two surfaces is weaker than the resistance between 
adhered components and the thickness of the adhesive is 
thin, the adhesive models show a better performance [28].

Based on the adhesive model, a traction-separation dia- 
gram is considered for the glue (Fig. 3). According to this 
diagram, sticky behavior is assumed linear with the K 
parameter as penalty stiffness. K is a mechanical property 
of the glue and determined via experiment. Softening starts 
(point A) after the formation of a small increase in the adhe-
sive thickness (δm

0). By increasing the load, its stiffness 
reduces up to the point that relative separation forms (δm

f). 
At this moment (point B), debonding happens [29, 30].

A scaler parameter, D, is used to consider stiffness vari-
ations. It indicates the level of damage at different points 
of the glue. Its value is assumed to be zero before damage 
initiates (D = 0). After on, D starts to rise gradually up 
to 1 (complete adhesive separation). During the damage 

(a)                                               (b)
Fig. 2 Adhesive layer; (a) Modeling adhesive layer with spring, (b) Nonlinear spring stiffness diagram

Fig. 3 Traction-separation diagram in adhesive layer [28, 29]
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progression phase, the springs stiffness decrease by (1-D) 
factor. D will be described in Section 2.2. According to 
Fig. 4, these phases can be divided into three parts; lin-
ear region (elastic), nonlinear zone (damage evolution), 
and separation district (zero-stress). δm

0 and δm
f relative dis-

placements of springs in the damage threshold and the 
separation moment, respectively [31, 32]. By consider-
ing three behavior phases in spring, its stiffness value is 
defined as below:
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Parameter δn is the relative vertical displacement, and 
δm

max
 is the maximum effective relative separation expe-

rienced by a point of the glue during loading. There is 
one exception to Eq. (6). ‹…› is the Macaulay bracket. 
It means that if the displacement of the bottom node is 
less the corresponding upper node, δn becomes lower than 
zero (δn < 0), which means that the adhesive layer is under 
compression. So, separation can not occur in the vertical 
direction. In the softening phase, Ks and Kn have a com-
mon parameter, D. So, their values are interdependent. 
In  this study, Kn becomes equal to 

E
t
a

a
 and the stiffness 

of the vertical spring will be constant. Ks is assumed con-
stant during the elastic behavior region. In the following, 

after glue reaches the damage initiation stage, it enters the 
nonlinear phase and will become decremental, and finally, 
in the debonding phase, it comes to zero. After calculating 
spring stiffness and determination of relative horizontal 
displacement at the common interface (δs), shear stress in 
glue can be determined by the following Eq. (7):

t Ks s s� � .	 (7)

The relative displacement values in the adhesive layer 
have two components. One of them is relative horizontal 
displacement (δs) used to determine shear stress in the glue, 
and the other component is relative vertical displacement, 
(δn) which is used to determine normal stress. The values of 
δs and δn are obtained as follows:
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The damage process initiates when stress or separation 
at the contact surface satisfies the damage initiation crite-
rion. Various criteria, such as maximum stress or maximum 
relative surface separation, have been proposed. Since both 
shear and vertical slips occur, considering the simultane-
ous influence of these two slips can be a more realistic cri-
terion. Fig. 5 represents the traction-separation diagram of 
adhesive under the simultaneous effect of normal and shear 
stresses. As is seen in Fig. 5, one of the two criteria of qua-
dratic separation or quadratic stress can be considered [34].

Since, in the EFG method, the interface displacement 
can be achieved easily, the Quadratic Separation Method 
is chosen to apply. According to this model, damage in the 
cohesive element initiates when the sum of the squares of 
the relative separations in Eq. (11) becomes equal to one.
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According to Fig. 5, δn
0 is the damage initiation defor-

mation when only normal stress exists, and δs
0 is for when 

only shear stress exists. Macaulay bracket is presented by 
the following relation (Eq. (12)) [35, 36]:
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Fig. 4 Separation manner in glue in three regions [31, 32]
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In the next part, the numerical criterion of damage evo-
lution parameter, D is presented.

2.2 Damage evolution parameter
The damage parameter, D equal to zero means corrup-
tion has not initiated. In the case of , the damage is in the 
growth phase, but separation has not occurred yet. Finally, 
if D = 1 then, separation has occurred. According to the 
definitions, the value of parameter D will be [35, 36]:
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As is shown in Fig. 5, δm
0 is the relative displacement 

during damage initiation and δm
f is the relative displace-

ment at the instant of full separation. The numerical value 
of these parameters is obtained from the below relation:
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The value of τc and σc are the maximum shear stress 
and maximum tensile stress tolerable by adhesive in the 
linear range, and the parameter K is penalty stiffness. The 

value of GIC is the strain energy due to normal stress of 
the glue and GIIC is strain energy due to shear stress of the 
glue. All  these parameters, along with coefficient η, are 
the mechanical properties of the glue and have been deter-
mined by experiments [36, 37]. The parameter δm

max is the 
maximum effective relative displacement experienced by 
the adhesive during its loading. δm is the effective relative 
separation parameter, which is defined as follows:

� � �m n s� �2 2 .	 (16)

It can be seen from Eq. (16) that in order to deter-
mine the damage evolution criterion, the combined effect 
of horizontal and vertical displacements is considered 
simultaneously. 

3 Element Free Galerkin method
Element Free Galerkin method (EFG) is one of the numer-
ical methods based on the minimum squares method. 
Adequate accuracy can be achieved by choosing nodal 
points, suitable weight functions with considering the 
boundary conditions. In this approach, there is no need 
for establishing a connection between all nodes; inter-
actions between surrounding nodes are enough [26, 38]. 
The main unknown is the value of nodal displacements, 
which can be obtained utilizing springs and the cohesive 
element concept in the EFG method structure. After mea-
suring nodal displacements, the magnitude of the debond-
ing load, shear stress values in the adhesive, concurrently 
with the tensile strain in the FRP plate, can be obtained.

3.1 Generating shape functions using MLS method
Based on the MLS method, the unknown function u(x) is 
approximated with function uh(x) as below:

Fig. 5 Combined diagram of traction-separation under the simultaneous effect of normal and shear stresses [34]
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where p(x) is a vector of polynomial basis function, and 
a(x) is a vector of unknown coefficients depend on x posi-
tion. m is the number of basis function terms. Linear and 
second-order functions are ordinarily basis functions in 
the MLS method. aj(x) coefficients are obtained from min-
imizing residual weighed square function. This function 
is expressed as:
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where uI is the nodal parameter for field variable, and n is 
the number of nodes located inside the coverage domain 
neighboring x. W(x – xI) is the weight function. In this 
study, a widely used fourth-order spline weight function is 
utilized. uh(x) is determined by minimizing J and solving 
the resulted linear equations as Eq. (19):
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In Eq. (19), Us is the quantity vector of variables in 
nodes inside the domain and Φ(x) is the matrix of shape 
functions, which is defined as shown below:
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A is the weight function matrix, and B is the values 
of the basic functions in the nodes. The stiffness matrics 
calculation needs first-order derivatives of the variables. 
So, derivatives of the shape functions must be calculated 
[26, 38]. In the next subsection, the resulted EFG equa-
tions and the way for the implementation of springs mod-
eling are presented.

3.2 Extraction of discrete equations
Overall potential energy for the beam and the FRP plate 
will be:
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where numbers 1 and 2 are assigned to the concrete beam 
and FRP plate, respectively. ε is the strain vector, Dk is 
the properties matrix of materials, Ω is the domain, and 
Γs is the adhesive boundary. ux

(k) and uy
(k) are the horizontal 

and vertical displacements of the material on the inter-
face. u is the displacement vector. The volume force rep-
resented with b. ̅t is the traction vector in boundaries, and 
Fi is the ith concentrated load. ui is the displacement vec-
tor in ith load location, and nCF is the number of applied 
forces. Second and third terms on the right side of the Eq. 
(21) belong to the influence of springs with cohesive struc-
ture. Stiffness values of (Ks) and (Kn) have already pre-
sented in Eqs. (5) and (6).

A remarkable point about Eq. (21) is MLS shape func-
tions have not the Kronecker delta function properties 
(φI (xJ ) ≠ δIJ ), and for, boundary conditions of the problem 
(Γu) are applied through penalty function. 

The example considered in this research is symmet-
ric, so half of the structure is modeled. The total poten-
tial energy introduced in Eq. (21) is modified by apply-
ing boundary conditions and penalty functions. Then the 
principle of minimum potential energy can be applied and 
is obtained as Eqs. (22) and (23):
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In Eqs (22) and (23), u(k) is the displacement vector of 
the kth material on the adhesive boundary Γs, which must 
be approximated on the domain Ωk. u̅ and ũ are the values 
of displacement or rotation in boundary (Γu). Also, α is the 
diagonal matrix containing penalty coefficients. Da is the 
stiffness matrix of the glue defined as Eq. (24): 
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The displacement field is approximated in terms of 
nodal parameters by introducing the MLS shape func-
tions in Eq. (23). The final discrete equations system is 
obtained as Eq. (25):

K K K FIJ IJ
A

IJ� ��� �� � U .	 (25)

In this equation, U is the vector of nodal parameters 
related to beam displacement. KIJ is the influence of the 
structural stiffness in the global stiffness matrix. It will 
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achieve so by applying the MLS approximation on the 
terms which, represent the internal virtual work of both 
beam and the plate.
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Matrix KI
A
J  in Eq. (25) belongs to springs with a cohesive 

structure and is determined using the following Eq. (28):
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1 2
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Matrix K̃ IJ in Eq. (25)  is resulted from applying geo-
metrical constraints with corresponding penalty coeffi-
cients α.

K L L dIJ b I
T

b J
u

� � � � �� � �� �
�

	 (29)

Finally, components of F are calculated as follows Eq. 
(30):

F b d td FI I I i i
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n

t

CF
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� � �� �
� �

1
.	 (30)

Equation (25) will be solved by incremental applying 
of the external load. In each step of loading using spring 
modeling, the first node with the damage index, D, so 
close or equal to one is investigated. The amount of load 
correspond to this step is identified as the debonding load. 
Afterward, the shear stress of the glue and the tensile 
strain of the plate are determined through Eq. (7) using 
node displacement in the interface of FRP and the glue. 
In the next section, the whole process are applied and the 
properties of the example are presented.

4 Numerical example
This section explanes a numerical example of the method. 
Also, includes properties of the assumed beam and mate-
rials, the node placement procedure, as well as the results 
of Kim et al. [39, 40]. 

4.1 Beam properties
Fig. 6 shows the sample used in this research. The lengths 
of beam and FRP sheet are 2800 mm and 1800  mm, 
respectively. The beam has 250 mm height and is sub-
jected under two concentrated loads, which will be applied 
incrementally.

4.2 Materials properties
The properties for the concrete beam and the FRP plate are 
given in Table 1. The specifications of the adhesive layer 
are listed in Table 2.

4.3 Node placement in the EFG method
As mentioned before, only half of the beam is considered 
for analysis due to symmetry. The numbers of selected 
nodes in the concrete beam are 80 along the longitudinal 
direction and 10 along with the height. The numbers of 
nodes along the longitudinal and thickness of the FRP plate 
are 60 and 3, respectively. Fig. 7, illustrates the placement 
of the nodes in the left half of the example. The closeness 
of nodes in the FRP is due to the low thickness.

4.4 Experiment results
The properties of the beam and FRP plate in the mentioned 
example are similar to the properties of the experiment in 
Kim et al. [39, 40] to compare the results. They used a  oten-
tiometer in the mid-span of the beam to measure vertical 

Fig. 6 The simply supported beam with FRP plate and two 
concentrated loads applied to the beam

Table 2 Mechanical properties of the adhesive layer [36, 39, 40]

Thickness(mm) τn
0 (MPa) τs

0 (MPa) K(N/m3) GIC(J/m2) GIIC(J/m2) η

0.2 80 80 1014 1740 2890 2.3

Table 1 Geometric and mechanical properties of concrete and 
FRP [39,40]

Concrete beam properties

Length(mm) Height(mm) fc(MPa) Ec(MPa) vc

2800 250 30 23700 0.15

Mechanical properties of FRP plate

Length(mm) Thickness(mm) fpu(MPa) EFRP(MPa) vFRP

1800 1 4500 245000 0.3
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displacement and some strain gauges along the FRP to 
measure the deformation of the plate. The load increase 
and continues until the first debonding occurs in the glue. 
The first separation point happened on the side edge of the 
FRP [39, 40].

The parameters determined are the load corresponding 
to the moment of the first separation, adhesive shear stress, 
and the amount of tensile strain along the length of the FRP 
plate. Table 3 presents the results of the experiment of Kim 
et al. [39, 40].

In the following section, the numerical results of EFG are 
compared with the experimental results of Kim et al. [39, 40].

5 Numerical results and comparison
In this section, the results obtained by the EFG method are 
compared with the results of the experimental tests of Kim 
et al. [39, 40]. The first subsection is dedicated to the com-
parison of load-deflection at the moment of adhesive sepa-
ration. The second and third subsections compare the glue 
shear stresses and FRP plate tensile strains with experi-
mental results, respectively.

5.1 Deflection in mid span due to external load
As can be seen in Fig. 8, the horizontal axis of the dia-
gram depicts mid-span deflection, and the vertical axis 

represents the applied load (P). The value of debonding 
load is given as 100.4 kN from EFG numerical analy-
sis and 93.8 kN in the reference paper [39, 40]. At this 
moment, the mid-span deflection is determined by the 
EFG method at about 19.7 mm and reported at 18.8 mm 
from experimental tests by Kim et al. [39, 40]. In the dia-
gram of the EFG results, a tiny step is observed around the 
12 kN load range. This step is due to damage initiation and 
softening phenomena in the glue.

5.2 Adhesive shear stress results 
The results of adhesive shear stress at the moment of sep-
aration are shown in Fig. 9. The horizontal and vertical 
axes represent FRP plate length and adhesive shear stress, 
respectively. The highest shear stress in the glue occurs 
close to the edge of the FRP plate. This behavior can be 
observed in the EFG results and, to some extent, in the 
experimental results of Kim et al. [39, 40]. In EFG results, 
the stress has some decremental trend in the plate edge, 
which is due to adhesive softening phenomena. In both 
diagrams, adhesive shear stress decreases in the middle of 

Fig. 7 Node placment in beam and FRP plate

Table 3 The output of the experimental result in three sections [39, 40]

Experimental results 2 and 3 Experimental results 1

Distance from FRP plate 
edge X (mm)

Shear stress in adhesive 
(MPa)

Tensile strain in FRP plate 
(Micron)

Loading value until first 
separation (KN)

Vertical deflection of the 
beam (mm)

65 2.4 0 0 0

204 1.79 0 26.8 3.1

339 1.8 300 38.8 6.2

481 1.35 332 52.3 8.7

613 1.33 1015 65.1 11.7

742 1.43 1750 84.2 16.1

860 1.05 2337 97.5 20.9

Fig. 8 Load-mid-span vertical deflection at the moment of first 
debonding
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the span because of the small shear deformations in this 
area. By comparing the curves in Fig. 9, it can be seen that 
the result of the EFG method is smoother and more uni-
form than the experimental results.

In the following the applied load increases from 100.4 KN 
to 110 KN. It has been found that more length of the adhe-
sive is separated (Fig. 10). In other words, by increasing the 
load, debonding increases, and the equivalent stiffness of 
springs, and consequently, shear stresses in these regions 
become zero. The location of the maximum shear stress 
moves slightly toward the mid-span and is placed close to 
the new separated point. Since no experiment has been per-
formed in the reference paper of Kim et al. [39, 40], only 
the results of the EFG method are presented.

5.3 FRP plate tensile strain results at the moment of 
debonding
Fig. 11 shows the results of the tensile strain in the FRP. 
The horizontal axis of the diagram displays the length of 
the plate, and the vertical axis shows the strain. Since the 
bending moment in the middle of the beam is high, the 
maximum tensile strain of the FRP occurs in this area. 
This issue appeared in both the EFG results and in the 
experiment of Kim et al [39, 40]. By nearing to the end of 
the plate, the tensile strain reduces. At the end part of the 
FRP where debonding occurs, tensile strain approximates 
to zero. In other words, as the plate separates, no force is 

transferred to the plate, and the resulted strain becomes 
zero. By comparing the results, it can be seen that the EFG 
method output is smoother than the other.

6 Conclusions
The goal of this research is to provide an alternative numer-
ical method to laboratory experiments. It will reduce the 
immense costs of the practical tests. A simple concrete beam 
with an FRP plate was used under two concentrated loads. 

Fig. 10 Shear stress in the adhesive as the load increases and passes 
the debonding load

Fig. 9 Maximum shear stress in the adhesive during load debonding

Fig. 11 FRP plate tensile strain during debonding
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For the numerical solution to this problem and to take into 
account the nonlinear behavior of the glue, a spring sim-
ulation was employed using the cohesive element failure 
concept. Properties and influences of the cohesive elements 
have been introduced into the EFG method formulation as 
the stiffness matrix of the replaced springs. By incremen-
tal applying of the load, the values of the debonding load, 
adhesive shear stresses, and FRP tensile strains were calcu-
lated. The results of the numerical EFG method were com-
pared with the experimental results of Kim et al [39, 40]. 

Results show that the idea of representing the behavior 
of the adhesive layer with a set of horizontal and vertical 
springs works very well. With this replacement, it is easy 

to determine the amount of deformation and the conditions 
of the adhesive layer. Also, results show that with contin-
uous springs simulation and the cohesive element failure 
model for evaluating the glue layer phenomena, the EFG 
numerical method can bring reasonable accuracy to the 
results. Hence, hard practical experiments with immense 
costs can be avoided. 

As mentioned before, in this study, a beam with a spe-
cific geometry and dimensions was used. In future studies, 
this modeling method will be applied to other examples 
with different geometric conditions to find the capacity of 
the proposed idea.
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