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Abstract

The variability of longitudinal bending strength of timber beams due to the presence of knots and other defects is analyzed. The weak 

zones model of timber beam bending strength used in the analysis consists of short weak zones (knots or group of them) and strong 

sections of clear wood. The load bearing capacity of timber beams is defined as an extreme (minimum) value problem or as a first 

downcrossing problem. Assuming a marked Poisson random field with zero correlation between all random variables, cumulative 

probability distribution functions of the load carrying capacity of timber beams were determined by analytical methods for typical 

load cases: pure bending, midspan point load and one-third point load. These results, as well as the marked Poisson random field 

as a model of longitudinal variability of the bending strength of timber beams, can be applied in the reliability analysis of timber 

structures. Furthermore, the analytical formulae for the cumulative distribution functions of load carrying capacity of timber beams 

can provide a good reference for numerical analysis conducted with Monte Carlo simulation to determined statistics for specific 

timber members.
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1 Introduction
Structural timber, which is a building material of natu-
ral origin, is characterized by many positive features: 
high strength relative to weight, ease of processing with 
machines and tools, nice appearance of timber struc-
tures. All trees have branches that are necessary to form 
a crown with a leaf system where solar energy can be used 
to produce cellulose and other organic matter. However, 
broken branches and intertwining of branches with the 
trunk results in dead and live knots. Because of the spe-
cific structure of the trunk and branches, structural tim-
ber can be characterized as a composite of clear wood and 
growth defects. Clear wood is anisotropic material and its 
properties does not change significantly along the grain. 
On  the other hand, growth defects such as knots, cross 
grains, wavy grains and interlocked knots are the main 
sources of longitudinal variation in bending strength of 
timber beams. Clear wood usually fails in the compres-
sion zone due to grain crushing, while a piece of struc-
tural timber containing defects (knots) often fails in the 
tension zone near one of the defects where the grains are 

distorted and stresses perpendicular to the grain can ini-
tiate crack growth. Growth defects are more or less ran-
domly distributed along structural timber. Therefore, the 
bending strength of structural timber depends on the load-
ing configuration and the length effect what is an import-
ant issue in codes of practice dealing with the determina-
tion of characteristic values for structural timber strength.

In design practice, a homogeneous model of timber beam 
has been used for many years, together with a specified test 
procedure for determining the characteristic value of bend-
ing strength of structural timber: "the defect that deter-
mines the class should be located in the shear-free zone 
formed by 1/3 point loads; the tensile edge should be ran-
domly selected". This conservative approach cannot lead to 
cost-effective designs. Developments in reliability meth-
ods over the past forty years enable more accurate mod-
elling and safety analysis of timber structures. However, 
the application of probabilistic analysis requires statistical 
data on the variability of structural timber properties. Statis-
tical data on bending strength variability are very sparse. 
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The development of more accurate computational methods 
for glulam construction has stimulated experimental studies 
aimed at obtaining statistical data on the longitudinal distri-
bution of knots and other defects as well as the longitudinal 
variation in bending or tensile strength.

Colling and Dinort [1] studied the incidence of knots 
in softwood used in glulam using the Knot-Area-Ratio 
(KAR), which depends on the predicted area of knots 
(within a segment equal to the beam height) relative to a ref-
erence area that is equal to the total cross-sectional area 
(in tension) or half of the cross-sectional area (in bending). 
KAR is used in visual grading as a measure of strength 
reduction due to knots. Using 456 boards taken from three 
different growing areas (Germany, Austria, Nordic coun-
tries), the average distance of 0.5 meters between major 
knots or groups of knots was determined.

Riberholt and Madsen [2] fitted an exponential distribu-
tion to experimental data on the distance between knots or 
groups of knots in Danish and Swedish spruce timber and 
found that the mean distance depended on the species and 
was 0.3–0.5 meters. Lam and Varoglu [3] investigated the 
variation of tensile strength within a grain-parallel element 
in spruce-pine-fir timber. The study showed a significant 
strength correlation between cross sections 0.5–1.0 meters 
apart. The strength correlation decreases to zero for dis-
tances greater than 1.8 meters.

According to [4], the probability distribution of bend-
ing strength of structural timber is dependent on the ten-
sile and compressive strengths. Therefore, the coefficient 
of variation for bending strength is usually higher than 
those coefficients for tensile and compressive strengths. 
Isaksson  [5] investigated the variation of timber bending 
strength within a member on the basis of experiments for 
133 boards of Norway spruce with 4–7 weak zones within 
a 5  m long board. Weibull and Normal models were fit-
ted to the experimental data for the bending strength of 
the weak zones. The high correlation between bending 
strength and localized modulus of elasticity is the basis 
of machine stress classification procedures. On the other 
hand, the correlation between strengths determined for sec-
tions 0.5 meters apart is close to zero. Baño et al. [6] used 
a finite element model to simulate structural timber beams 
with defects and predict their maximum bending load. 
Assuming the elastoplastic constitutive law of wood, the 
prediction of the failure load gives information about the 
failure mechanisms of the timber, in particular with respect 
to the influence of knots and their local deviation from the 
grain. Pereira and Machado [7] investigated a probabilistic 

method to evaluate the bending strength of maritime pine 
beams in a probabilistic framework based on Monte Carlo 
simulations, in which the reference properties of the beams 
were randomly assigned based on their probability distri-
butions, considering that weak zones are associated with 
reduced bending strength that is caused by the presence of 
knots or grain deviation. Köhler and Faber  [8] presented 
a probabilistic model code for timber that accounts for the 
influence of a hierarchical model of spatial variation along 
with cross-sectional properties by taking a timber beam as 
a longitudinal sequence of weak sections.

To summarize a brief review of research on the depen-
dence of bending strength on knots and other defects, there 
is a systematic shift away from the homogeneous tim-
ber beam model to models that take into account a well-
known characteristic of timber that has a major impact on 
the safety of timber structures: structural timber consists of 
longer sections of clear wood and short sections associated 
with defects. Since the bending strength of a cross section 
with a knot is usually much lower than that of clear wood, 
failure of a timber beam usually occurs or is initiated near 
a knot or group of knots. This paper presents the results of 
analyses performed for the weak zones model proposed by 
Riberholt and Madsen [2]. The reliability analysis, based on 
the weak zones model, presented in [9] confirms the advan-
tages of using the weak zones model instead of the homo-
geneous timber beam model. This paper presents analyti-
cally derived cumulative probability distribution functions 
for the load carrying capacity of a timber beam subjected 
to standard load cases: pure bending and 1/3 point loading.

2 Weak zones model of the bending strength variation 
in structural timber
The bending strength of a cross-section with a knot depends 
on many factors, such as:

•	 knot size and shape
•	 knot position within the cross-section (in tensile or in 

compression zone)
•	 inclination of grains in the vicinity of a knot
•	 intersection of grains around a knot by the beam sur-

face (especially in the tensile zone)
This paper presents application of a simple mechanical 

model of a timber beam under bending, as shown in Fig. 1, 
which is called the weak zones model of a timber beam 
and is based on the following assumptions:

•	 timber beam is modelled as a composition of short 
weak zones connected by longer sections of clear 
wood
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•	 weak zones correspond to knots or group of knots 
and are randomly distributed

•	 failure can only occur within weak zones
•	 bending strength (modulus of rupture, MOR) of 

a weak zone is a random variable
The distribution of bending strength should rather be 
described with the help of a continuous function, which 
allows smooth transition between strong clear wood and 
weak zones. However, the inhomogeneous random field 
model seems to be the most general model which could 
be employed in the description of the lengthwise variabil-
ity in bending strength. The weak zones model reflects 
in a simplified way a very important feature of structural 
timber, i.e., the variability of the bending strength depends 
on knots or group of knots.

Two versions of this model can be considered
•	 both the distance between weak zones as well as the 

length of weak zones are random variables; the ran-
dom strength of a weak zone depends on the ran-
dom variable and some deterministic weight func-
tion, which describes the variation of strength within 
a weak zone (e.g., rectangular, parabolic or triangu-
lar distribution).

•	 the length of a weak zone is equal to zero, thus a weak 
zones becomes a weak cross-section.

This paper deals with the application of the second 
model mostly, since both analytical solutions as well as 
parametric studies employing simulation could be carried 
out for the 'spike' version of the weak zones model. The 
first model is applicable only in specific cases, e.g., the 
analysis of a simply supported beam under pure bending. 
It can be shown that under certain conditions the proba-
bility distribution function of the load carrying capacity 
is identical for the two versions of the weak zones model.

3 Two probabilistic models of variability of strength of 
timber beams
The weak cross-section model or weak zones model is com-
posed of two independent random point series:

•	 distances between consecutive weak zones: {∆i}
•	 strengths of weak zones: {Ri}
In this paper both random point series are treated as 

homogeneous series, i.e., the statistics of random series 
are invariant to the translation of the origin, in particular, 
the nth order probability density function has the property 
for any distance dx.

f s x s x

f s x dx s x dx

s s n n

s s n n

…

…

( ) ( )( )
= +( ) … +( )( )

1 1
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Another concept used in bending strength modelling is 
the filtered random field, which is defined by the linear 
transformation

Z x h x Y x( ) → ( ) → ( ) ,	 (2)

where h(x) is a homogeneous impulse response function. 
In particular h(x) can be a deterministic response function.

Furthermore, when the impulse response function is 
restricted to a point pulse at a particular position xo, then 

h x x xo( ) = −( )δ ,	 (3)

where δ(x) is the Dirac's delta function and the filtered ran-
dom field becomes "the marked random field", see [10].

3.1 Bending strength modelled by the filtered and 
marked Poisson random fields
Assuming the distances between consecutive weak zones: 
{∆i} as  homogeneous Poisson random field what means 
that the random number N(x) of weak zones within interval 
‹0, x› follows the Poisson distribution, the bending strength 
can be modelled by the filtered Poisson random field.

Fig. 1 Modelling the lengthwise variation bending strength in timber
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where {xi} - the random positions of weak zones generated 
by the Poisson random field; w(x, xi, Ri) - a deterministic 
response function with different shapes: e.g., rectangular, 
triangular or parabolic; {Ri} - independent random vari-
ables assigned to weak zones. 

The random variable Ri denotes a reference strength 
within a weak zone, usually the minimum value and can 
have any type probability distribution function (pdf ), 
Fd(r), but usually is assumed of the same type for all weak 
zones. In general the series {Ri} can be inhomogeneous, 
i.e., it may depend on the position of weak zones. 

If the weak zone lengths are considered to be much 
smaller than the distances between weak zones, then the 
marked Poisson random field is used to model the bending 
strength of structural timber.

R x R x x
i

N x

i i( ) = −( )
=

( )

∑
1

�δ 	 (5)

In case of the filtered and marked Poisson random field 
the important parameter is the intensity of weak zones 
(weak cross-section) per unit length, v(x), which can be 
a function of the space coordinate for a non-homogeneous 
Poisson random field. The application of the homogenous 
Poisson random fields defined by Eqs. (1), and (2) makes 
analytical solutions possible.

3.2 Bending strengths and weak zone intervals as a 
translation random series
When both random point series {Ri}, {∆i} are assumed as 
translation random series, then the mean value, the  cor-
relation function and the first-order probability distribution 
functions Fd, F∆ are assumed to be known. This model is 
more general than the Poisson model. Translation random 
series allow any type of distribution functions Fd, F∆ and 
correlation between pairs of random variables Ri, Rj and 
pairs of random variables ∆i, ∆j. In general, both series can 
be inhomogeneous. Although this model allows a more gen-
eral description of the variation of bending strength, Monte 
Carlo simulations are required to solve practical problems.

4 Load carrying capacity of timber beams as the 
extreme value problem and the first downcrossing 
problem
The load carrying capacity generally denotes the mini-
mum external load which causes the failure of a structure. 

Assuming that timber is a brittle material, the failure of 
a  timber beam occurs when the bending strength (the 
modulus of rupture, MOR) is attained at any cross-section. 
The  minimum stress at which the ith weak zone fails is 
equal to

Z
R

m xi
i

i
=

( ) ,	 (6)

where Ri, xi the bending strength and the position of the ith 
weak zone and m(x) = M(x)/Mmax is the normalized bend-
ing moment function. Since both Ri, xi are random vari-
ables, the stress Zi is a random variable, and for a beam 
of length L the number of weak zones is a random vari-
able, NL = N(L). The probability distribution function of 
the load carrying capacity depends on random variables 
{Z1,…, ZN} at all weak zones within the beam span L and 
can be determined by solving one of two equivalent prob-
lems, described in the following.

4.1 The extreme-value problem
The probability distribution function of the load carrying 
capacity Z is expressed as the extreme-value distribution.

F z P Z z P Z Z zZ NL( ) = − >[ ] = − …( ) >



1 1 1min , , 	 (7)

In general the random variables Zi Eq. (6) are correlated. 
However, when the function m(x) is constant and random 
variables Ri are uncorrelated than the random variables Zi 
are also uncorrelated. The extreme-value definition can be 
applied together with the Monte Carlo simulation and the 
transition series to study the influence of correlation in the 
point series {Ri}, {∆i} on the statistics of the load carrying 
capacity Z of timber beams.

4.2 The first downcrossing problem
Failure occurs when at least one strength variable Ri 
down-crosses the maximum bending stress function, i.e., 
S = Z m(x). The load carrying capacity is greater than z, 
if the first downcrossing occurs at a distance longer than 
the beam span L.

Thus, the cumulative probability distribution function of 
Z is derived with the help of the probability of the survival.

1 1 1− ( ) = > ( )∩…∩ > ( )



F z P R zm x R zm xZ N NL L

	 (8)

The first downcrossing definition has been employed 
together with the Poisson random field to derive the ana-
lytical expressions for the distribution functions of the 
load carrying capacity of simply supported timber beams.
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4.3 CDF of load carrying capacity of a simply supported 
timber beam subjected to pure bending
If a timber beam is subjected to a constant bending moment 
m(x) = 1, then the filtered and marked Poisson random field 
could be employed to model the lengthwise variability of 
bending strength.

4.3.1 The extreme-value distribution for independent 
random variables
Assuming the marked Poisson random field the indepen-
dent random variables {R1,…, RN} are assigned to NL weak 
zones. For a fixed number of weak zones NL the distri-
bution function of the load carrying capacity of a timber 
beam subjected to pure bending can be determined as the 
minimum value distribution of NL independent random 
variables {R1,…, RN}.

F z F zZ d
NL( ) = − − ( ) 1 1 ,	 (9)

where Fd(z) is the cumulative probability distribution 
function of strength for each weak zone.

At a low stress level the distribution function is close to 
zero, Fd(z) << 1, so the distribution can be approximated by

F z exp N F zZ L d( ) ≈ − − ( )( )1 .	 (10)

4.3.2 The mixed model of bending strength of a timber 
beam
The more general solution can be obtained for the mixed 
model of bending strength presented in Fig. 2, where the 
bending strength of a timber beam depends both on the fil-
tered Poisson random field of bending strength of weak zones 
and the homogeneous random field of bending strength of 
clear wood. The following assumptions establish the model:

•	 the distance between weak zones (defects) follows the 
Poisson law with the intensity v(x); the mean number 
of weak zones NL within beam span L is equal to 

N x dxL

L

= ( )∫
0

ν .	 (11)

•	 the length of a weak zone δi is a random variable 
with common distribution for all weak zones and the 
mean value denoted as E[δi].

•	 the bending strength Rd is constant within each weak 
zone and is a random variable with common distri-
bution function Fd for all weak zones

•	 the bending strength of clear wood Rc is a homoge-
neous random field with the first order distribution 
function Fc.

The probability density function and the probability 
distribution function of bending strength are defined as 
follows

f p f pf

F p F pF

r r r

r r r
R c d

R c d

( ) ( ) ( )

( ) ( ) ( )

( ) ,

( ) ,

= − +

= − +

1

1
	 (12)

where p is equal to the fraction of the mean length of a weak 
zone with respect to the mean distance between weak zones.

p
E
E

i

i
=

 
 

δ
∆ 	 (13)

If p → 0, then the marked (spike) Poisson random field 
of weak zones is valid. If p → 1 then the filtered Poisson 
random field becomes the Poisson rectangular-wave ran-
dom field, i.e., the strength of the whole beam is repre-
sented by the weak zones random field.

The weak zones model in Fig. 1 and the marked Poisson 
model in Fig. 2 depend on the constant strength of clear 
wood. The variations in bending strength of clear wood 
are considered unimportant in relation to the variations in 
bending strength of weak zones. In such a case the func-
tions given by Eq. (12) have got simpler forms,

Fig. 2 Mixed models of bending strength of structural timber
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f r p R pf r

F r p H R pF r

R c d

R c d

( ) = −( ) ( ) + ( )
( ) = −( ) ( ) + ( )

1

1

δ ,

,
	 (14)

where Rc is the constant strength of clear wood, δ(Rc) is 
the Dirac's delta function and H(Rc) is the Heaviside's 
function.

The load carrying capacity of a timber beam subjected 
to pure bending is equal to the minimum value of the 
strength along the beam span

F z P R x z x L

F z P R x z x L

Z

Z

( ) = ( ) ≤ ∈[ ] 

( ) = − ( ) > ∈[ ] 

min ; , ,

min ; ,

0

1 0  .
	 (15)

The Poisson random field is defined for the left-end 
open interval x ∈ [0,L], i.e., the Poisson distribution is 
based on the assumption N(0) = 0 . Thus, R(x) over the 
whole beam span depends both on the distribution at x = 0 
(i.e., the distribution at arbitrary point on axis) and on the 
minimum of the filtered Poisson random field,

1 0 0− = ( ) ( ) ∈( ]{ } >



F P min R R x x L zZ , ; , ,	 (16)

1 1 2− =F PPZ .	 (17)

The first probability in Eq. (17) is equal to 

P P R z F zR1 0 1= ( ) >  = − ( ) .	 (18)

The second probability in Eq. (17) shall be computed 
with help of the total probability theorem	 (19)

Since it has been assumed that the strengths at weak 
zones are independent random variables and are assigned 
to weak zones distributed according to the Poisson law

P N L n
L
n

e
n

L( ) =  =
( ) −ν ν

!
,	 (20)

the probability distribution function of the load carrying 
capacity of a beam under pure bending is equal to

F z p p F z pF z eZ c d
LF zd,( ) = − − −( ) ( ) − ( ) 

− ( )
1 1 1

ν .	 (21)

There are two limit cases as follows:
•	 p = 0: the marked (spikes) Poisson random field of 

weak zone.

F z F z eZ c
LF zd,0 1 1( ) = − − ( ) 

− ( )ν 	 (22)

•	 p = 1: the rectangular-wave Poisson random field of 
weak zones, i.e., the timber is composed of weak 
zones only.

F z F z eZ d
LF zd,1 1 1( ) = − − ( ) 

− ( )ν 	 (23)

It can be shown that the distribution function by Eq. (21) 
is also valid in case of weak zones with variable strength.

All distribution functions (Eqs. (21)–(23)) are exact 
functions under the given assumption valid for the corre-
sponding models. Assuming z << E[Rc], then Fc(z) ≈ 0 and 
the approximate distribution, valid at low stress level, can 
be obtained from Eq. (21).

F z p pF z eZ d
LF zd,( ) ≈ − − ( ) 

− ( )
1 1

ν 	 (24)

If p << 1, i.e., the weak zones model is valid, then 
pFd(z)  ≈  0 and the approximate distribution function is 
obtained.

F z p eZ
LF zd,( ) ≈ − − ( )

1
ν 	 (25)

The above function depends on the mean number of 
weak zones within a beam span, but it is similar to the 
function Eq. (10), which has been derived for a fixed num-
ber of weak zones. 

For a higher stress level the distribution function given 
by Eq. (25) tends towards

lim lim
z Z z

LF z LF z e ed

→ →

− ( ) −( ) = −




= −

∞ ∞

ν ν
1 1 .	 (26)

4.3.3 Riberholt-Madsen model
Riberholt and Madsen [2] have derived the approximate 
distribution function given by Eq. (25), assuming the 
weak zones model and the marked Poisson probabilistic 
model, which is only valid at low stress level, i.e., the load 
carrying capacity is governed by weak zones with defects. 
Furthermore, the distribution function of the load carry-
ing capacity for all stress levels has been derived under the 
assumption that a timber beam fails only at weak zones, 
i.e., a beam without defects can survive any load. The total 
probability theorem applied to the probability of survival 
(conditional on the number of weak zones) results in the 
following formula for the probability that the load carry-
ing capacity is greater than z, since it has been assumed 
that the failure can only occur at weak zone, i.e., 

P Z z N

P Z z P N P Z z N P N
L

L L L

> = =

>[ ] = =[ ]+ > ≥ ≥[ ]
|

|

0 1

0 1 1

,

.

	 (27)

It is assumed that the weak zones constitute a Poisson 
random field with intensity v(x). Those weak zones at 

P P minR x x L z

P min R R z N L n P
n

N L

2

0

1

0= ( ) ∈( ] >  =

= …{ } > ( ) =
=

( )∑

; ,

, ,

∞

| NN L n( ) =  .
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which random variables {Ri} down cross the stress func-
tion S(x) = Z constitute a new Poisson random field with 
the intensity vz(x) = v(x)Fd(z). Thus, the following proba-
bilities can be derived

P Z z e N F zL d>[ ] = − ( ) ,	 (28)

P N e P N eL
N

L
NL L=[ ] = ≥[ ] = −− −

0 1 1 ,	 (29)

and the distribution function of the load carrying capacity 
Fz(z) for the marked Poisson random field of weak zones 
and constant strength of clear wood is as follows:

F z e
eZ

RM
N F z

N

L d

L
( ) = −

−

− ( )

−
1

1
	 (30)

This function has been derived by Riberholt and 
Madsen [2] and is valid at all stress levels. The distribu-
tion function Eq. (30) can be represented as the condi-
tional probability.

F z P Z z N
P Z z N

P NZ
RM

L
L

L
( ) = ≤ ≥ =

≤ ∩ ≥[ ]
≥[ ]

| 1
1

1
	 (31)

In the following, the distribution functions similar to 
the conditional probability, Eq. (31), are called distribution 
function according to Riberholt-Madsen model, whereas 
a distribution function defined by Eq. (25) is referred to as 
the distribution function according to the weak zones model.

The approximate functions defined by Eqs. (25), Eq. (30) 
are compared in Fig. 3, for different mean number of weak 
zones. Both distributions are close to each other at low 
level of stresses. The difference in the upper part tail 
diminishes with growing number of weak zones.

Two distribution function: according to the rectangu-
lar-wave Poisson random field, Eq. (23), and the Riberholt-
Madsen function, Eq. (30), which are valid at all stress lev-
els, are compared in Fig. 4. Both functions are similar to 
each other. The difference between them decreases slower 
than between the functions shown in Fig. 3.

4.4 Bending strength of timber modelled by the 
inhomogeneous marked Poisson random field
Let's assume that the bending strength of a timber beam is 
modelled by the random variables {Ri} assigned to weak 
zones with the lengthwise distribution governed by the 
Poisson random field with the intensity v(x). Definition of 
the load carrying capacity as the first downcrossing prob-
lem is employed in this case.

To derive the probability distribution function Fz(z) it is 
important to notice that those weak zones at which random 
variables {Ri} downcross the stress function S(x) = Zm(x) 
constitute Poisson random field with the intensity

ν ν νZ d dx x F S x x F Z m x( ) = ( ) ( )( ) = ( ) ( )( )� ,	 (32)

where Fd(r) is the first-order distribution function of ran-
dom variables {Ri}.

Hence, the distribution function of the load carrying 
capacity Fz(z) can be computed with help of three equiva-
lent definitions:

•	 by using the probability of survival, i.e., the beam 
survives the stress level z, if the strength function 
R(x), defined by Eq. (4) or Eq. (5), is above the stress 
function S(x) = Zm(x) within the beam span L,

Fig. 3 Comparison between two distribution functions of load carrying 
capacity of timber beams subjected to pure bending

Fig. 4 Comparison between two distribution functions of load carrying 
capacity of timber beams subjected to pure bending
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F z P R x S x zm x

x L

Z ( ) = − ( ) > ( ) = ( ) 

≤ ≤[ ]
1

0

,

,for
	 (33)

•	 by using the probability of survival, i.e., the beam 
survives the stress level z, if the strength function 
R(x), defined by Eq. (4) or Eq. (5), down crosses the 
stress function S(x) = Zm(x) first at the distance x(1) 
which is longer than the beam span L.

F z P R x zm x x LZ ( ) = − ( ) < ( )



>1 1 1 1( ) ( ) ( ); 	 (34)

•	 by using the probability that the inhomogeneous 
Poisson random field with the intensity vz(x), defined 
by Eq.  (32), has no occurrence within the beam 
span  L, i.e., the first downcrossing does not occur 
within beam span.

F z P N L xZ Z( ) = − ( ) = ( ) 1 0;ν 	 (35)

Hence

F z exp x dx e

I z x

Z

L

Z
I z

L

( ) = − − ( )











= −

( ) = ( )

∫

∫

− ( )
1 1

0

0

ν

νwhere FF zm x dxd ( )( ) .

	 (36)

The distribution function by Eq. (35) is an extension of 
the relation by Eq. (25) for the case of the variable moment 
function m(x) and inhomogeneous random series {Ri}.

The integral defined by Eq. (36) depends on the inten-
sity function v(x) defining the distribution of weak zones, 
on the probability distribution function Fd(r) for the bend-
ing strength of weak zones as well as on the normalized 
bending moment function m(x). In most cases the inte-
gral by Eq. (36) must be evaluated by means of numerical 
methods for specific data. However, if the variability of 
the strength of weak zones is modelled with the Weibull 
model, then an analytical expressions for the distribution 
function Fz(z) can be obtained.

4.4.1 Timber beam with inhomogeneous distribution of 
weak zones
Application of a homogeneous Poisson random field for the 
distribution of weak zones means that distances between 
weak zones have an Exponential distribution function and 
are not correlated as well as the shorter distances between 
weak zones are assumed to be more probable than longer.

In order to study another arrangement of weak zones 
a particular type of a inhomogeneous Poisson random field 
has been applied, with the intensity function

ν δx x x
i

N L

i( ) = −( )
=

( )

∑
1

,	 (37)

where N(L) is the number of weak zones within a beam of 
length L and xi is the position of the ith weak zone defined by

x x i for i N Li = + −( ) = … ( )1 1 1∆ , , .	 (38)

In general, both the distance to the first weak zone, x1, and 
the distance between weak zones, ∆, are random variables. 

In particular case assuming that the distance to the first 
weak zone, x1, is random, but the distance between weak 
zones, ∆, is deterministic and assuming the weak zones 
intensity function according to Eqs. (37) and (38) the inte-
gral Eq. (36) can be determined analytically and the func-
tion I(z) is equal to

I z F zm x
i

N L

d i( ) = ( ) 
=

( )

∑
1

.	 (39)

Thus, the conditional cumulative distribution function (CDF) 
for the load carrying capacity of the weak zones model is

F z x exp F zm xZ
i

N L

d i| 1
1

1= − − ( ) 










=

( )

∑ ,	 (40)

and for the given probability density function fx1
(x1) of the 

distance to the first weak zone, the unconditional CDF 
for the load carrying capacity of the weak zones model is 
obtained.

F z F z x f x dxZ
x
d x( ) = ( )∫

1

11 1 1| 	 (41)

The above formula is valid for any functions Fd and fx1
. 

Moreover, in the case of a beam under pure bending  
does not depend on fx1

, i.e., the probability distribution 
function for the distance to the first weak zone.

4.4.2. Timber beam with homogeneous distribution 
of weak zones and Weibull distribution of bending 
strength of weak zones
The function I(z) defined by Eq. (36) may be derived ana-
lytically, for the following cases:

•	 a homogeneous Poisson random field is assumed for 
the distribution of weak zones, with constant v(x) = v.

•	 Weibull distribution is assumed as the probability 
model of bending strength of weak zones.

F r exp
r

d
d

d

d

( ) = − −
−




















1

µ
σ

λ

,	 (42)
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where μd is the location parameter, σd is the scale parame-
ter and λd is the shape parameter.

Assuming the Weibull model of weak zones strength 
and constant intensity v of weak zones distribution, the 
integral by Eq. (36) has been evaluated for the normalized 
bending moment functions and the cumulative probabil-
ity distribution functions of load carrying capacity have 
been obtained for three typical load cases, considered in 
the design of simply supported timber beams: a) the mid-
span point load FZ

a, b) the one-third point loads FZ
b, c) the 

pure bending FZ
c.

F z exp I z

F z exp I z I z

Z
a

Z
b

( ) = − − ( ) 

( ) = − − ( ) − ( )





1

1
2

3

1

3

1

1 2

,

,

FF z exp I zZ
c ( ) = − − ( ) 1 2 ,

	 (43)
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and the function  is
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and  is the incomplete gamma function

γ a x t e dt
x
a t

,( ) = ∫ − −

0

1 .	 (46)

It is worth noticing that in the case of the one-third 
point load the function I(z) is the combination of two 
functions I1(x), I2(x) with coefficients equal to the propor-
tion of beam subjected to the linear moment function and 
constant moment function, respectively. It can be shown 
that the same CDF as for a midspan point load, Eq. (43), 
is obtained for: a simply supported beam under concen-
trated force applied at any point, a cantilever subjected to 
point load at free end, a  fixed-fixed beam under a mid-
span point load. All three distribution functions, given by 
Eq. (43) are valid at the low stress levels.

In order to obtain the cumulative probability distribu-
tion functions valid at all stress levels, i.e., according to 
Riberholt-Madsen model, functions by Eq. (43) should be 
divided by the probability that there is at least one weak 
zone within the beam span.

P N eL
NL≥[ ] = − −1 1 	 (47)

For the pure bending load case, see Fig. 3, the difference 
between the two types of distribution depends on the mean 
number of weak zones within a beam span. Fig. 5 shows 
the comparison for the midspan point load and Fig. 6 for 
the one-third point loads. For a typical mean number of 
weak zones observed in timber, i.e., NL ≥ 5, the difference 
is small, particularly at the lower tail of distributions.

In design practice the most important parameter is 
the characteristic value of the load carrying capacity Zk 
defined as the pth quantile of the distribution function Fz, 
where p  =  0.05 is usually assumed for the resistance 
variables.

F Z P Z Z pZ k k( ) = ≤  = 	 (48)

Fig. 6 Comparison between two probability distribution functions of 
load carrying capacity of timber beams under one-third point loads

Fig. 5 Comparison between two probability distribution functions of 
load carrying capacity of a timber beam under midspan point load
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The characteristic values of load carrying capacity can 
be computed by solving the following equations

a) the middle point load

I Z pk1 1( ) = − −( )ln 	 (49)

b) the one-third point loads
2

3

1

3
11 2I z I z p( ) + ( ) = − −( )ln 	 (50)

In case of the Riberholt-Madsen model the right sides of 
Eqs. (49) and (50) must be changed, i.e.,

a) the middle point load

I Z p ek
NL

1 1 1( ) = − − −( )( )−
ln 	 (51)

b) the one-third point loads
2

3

1

3
1 11 2I z I z p e NL( ) + ( ) = − − −( )( )−

ln 	 (52)

If the mean number of weak zones NL is greater than 5, 
the factor e–NL ≤ 0.00674 is quite small. Thus, in a  typi-
cal case the solutions of Eqs. (49) and (50) are suffi-
ciently accurate. It is worth noticing that the characteris-
tic values computed according to the weak zones model 
are always greater than corresponding values according 
to the  Riberholt-Madsen model. On the other hand dis-
tribution functions derived according to the Riberholt-
Madsen model cannot be considered as accurate solutions. 
An exact solution is unknown and depends both on the 
strength of weak zones and clear wood.

For a timber beam under pure bending the characteris-
tic value is given by the formula

Z
L

pk d d
d= + − + −( )
















µ σ

ν

λ
ln ln1

1
1

1

,	 (53)

which can be simplified with help of the linear expansion 
of the logarithm function

Z
p

Lk d d
d

= + −
−( )











µ σ
ν

λln 1

1

	 (54)

Dependence of the bending strength on the beam length 
and load configuration has been observed in many exper-
imental tests, see [6], [11]. Taking into account formulae 
Eqs. (53) and (54) the relationships between the character-
istic values Zk1, Zk2 corresponding to the beams spans L1, L2 
can be obtained. In case of a beam under pure bending, the 
relationship is similar to a formula presented in [11] for the 
length effect on the basis of the Weibull weakest link theory,

Z
Z

L
L

k d

k d

d1

2

2

1

1

−
−

=










µ
µ

λ 	 (55)

Thus, the shape parameter λd in the Weibull distribu-
tion assigned to the bending strength of weak zones deter-
mines the degree of the length effect. This means that 
experimental data concerning the relation between span of 
beams and the characteristic value of load carrying capac-
ity of timber beams under pure bending could be used in 
determination of the parameters μd and λd in the Weibull 
distribution related to the bending strength of weak zones. 
The length effect described by Eq. (55) does not depend 
on the intensity of weak zones v, since the distribution of 
weak zones {xi} is modelled by the homogeneous Poisson 
random field with v(x) = v.

5 Conclusions
A homogeneous model of a timber beam has been used 
in design practice for many years. It is assumed that both 
the modulus of elasticity and the modulus of rupture 
(load bearing capacity) are constant along the beam axis. 
On the other hand, the brittleness of structural timber due 
to the presence of knots or other defects is well known. 
Therefore, in order to guarantee the required margin of 
safety, the test procedure for determining the character-
istic value of the bending strength of structural timber 
requires that the class defining defect should be placed in 
the shear free zone produced by a one-third point loads, 
i.e., the part of a beam with a significant defect should be 
subjected to pure bending. This approach leads to safe and 
conservative design. The development of reliability meth-
ods over the last forty years enables more accurate mod-
elling and safety analysis of timber structures. However, 
the application of probabilistic analysis requires statistical 
data on the variability of structural timber properties.

This paper presents an analysis of timber bending 
strength variability based on the weak zones model pro-
posed in [2]. It  is  a simple mechanical model, but takes 
into account the basic failure mode of timber beams, 
which in bending usually fail at knots or groups of knots. 
The growth defects are typical for structural timber pro-
duced from conifer trunks. The weak zones model is based 
on the assumption that a structural beam can only break 
in a weak zone or in a weak cross section. The presented 
analysis is independent of the analysis described in [2]. It is 
shown that both solutions are equivalent in special cases.

The load bearing capacity of timber beams was deter-
mined by solving the first downcrossing problem assum-
ing that the distances between weak zones are a Poisson 
random field, with both the strength of the weak zones 
and the distances between them being independent. Two 
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types of homogeneous random series (one dimension 
random field) were considered: a filtered random series 
and a marked random series. Analytical formulae for the 
cumulative probability distribution function of the load 
carrying capacity were obtained for the cases of: (1) a tim-
ber beam subjected to pure bending with a filtered and 
marked Poisson random field to model the strength of the 
timber, (2) a timber beam with a particular type of inho-
mogeneous Poisson random field modelling the distribu-
tion of weak zones, (3) a timber beam with a homogeneous 
distribution of weak zones and a Weibull distribution of 
the bending strength of weak zones. Example calculations 
were performed for three typical load cases: pure bending, 
mid-span point load and one-third point loads, which are 
typical in the grading process of structural timber. Unlike 
structural materials produced under controlled conditions 
(e.g., steel or concrete), each timber beam must be graded. 

Therefore, the relationship between two cumulative prob-
ability distribution functions is important: the load car-
rying capacity of timber beam and the strength of weak 
zones. The analysis performed confirms the load configu-
ration effect and size effect on the characteristic values of 
structural timber strength.

From the example calculations determined by the ana-
lytical formula, it can be concluded that the probability 
distribution of the load carrying capacity of a timber beam 
depends more on the number of weak zones than on the 
type of analysis. As the number of weak zones increases, 
the probability distributions obtained in this paper and 
in  [2] are close to each other. Thus, the filtered Poisson 
random field applied to the weak zones model appears to 
be a suitable probabilistic model of bending strength and 
is recommended for practical applications, especially in 
reliability analysis of timber structures.
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