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Abstract

Portal frames are single-story frame buildings including columns and rafters, and their rafters can be either curved or pitched. These 

are used widely in the construction of industrial buildings, warehouses, gyms, fire stations, agricultural buildings, hangars, etc. The 

construction cost of these frames considerably depends on their weight. In the present research, the discrete optimum design of two 

types of portal frames including planar steel Curved Roof Frame (CRF) and Pitched Roof Frame (PRF) with tapered I-section members 

are presented. The optimal design aims to minimize the weight of these frame structures while satisfying some design constraints 

based on the requirements of ANSI/AISC 360-16 and ASCE 7-10. Four population-based metaheuristic optimization algorithms are 

applied to the optimal design of these frames. These algorithms consist of Teaching-Learning-Based Optimization (TLBO), Enhanced 

Colliding Bodies Optimization (ECBO), Shuffled Shepherd Optimization Algorithm (SSOA), and Water Strider Algorithm (WSA). Two 

main objectives are followed in this paper. The first one deals with comparing the optimized weight of the CRF and PRF structures 

with the same dimensions for height and span in two different span lengths (16.0 m and 32.0 m), and the second one is related to 

comparing the performance of the considered metaheuristics in the optimum design of these portal frames. The obtained results 

reveal that CRF is more economical than PRF in the fair comparison. Moreover, comparing the results acquired by SSOA with those of 

other considered metaheuristics reveals that SSOA has better performance for the optimal design of these portal frames.

Keywords

curved roof frames, pitched roof frames, tapered members, discrete optimization, metaheuristic algorithms

1 Introduction
Portal frames are a type of structural frame in which its 
elements comprise columns and curved or pitched raf-
ters. In these frames, the connections between columns 
and rafters are considered as moment-resisting. However, 
the connections between columns and base plates can be 
either pin-jointed or fixed-jointed, and the pin-based are 
more economical than the fixed-based  [1]. Portal frames 
are widely used in the construction of industrial buildings, 
warehouses, gyms, fire stations, agricultural buildings, 
hangars, etc. These can be constructed in different forms. 
In this study, two types of them namely Pitched Roof 
Frame (PRF) and Curved Roof Frame (CRF) are inves-
tigated. Members of these frames can be either prismatic 
or non-prismatic (tapered). The prismatic members have 
a constant cross-section, while tapered members have 
a variable-cross section along their entire length. From the 
economic aspect, incorporating tapered members into the 

portal frames leads to non-uniform distribution of bend-
ing moments and decreases the use of material over a wide 
range of spans [2]. 

Structural optimization, such as topology optimiza-
tion  [3–5], is one of the most studied research topics in 
engineering [6], and it has been attracted many research 
items. Since there is a limited number of existing resources 
in engineering design, designers attempt to find a solution 
fulfilling all requirements and have the lowest possible 
cost. Obtaining this optimum solution is a difficult task. 
It cannot be found with an exact method within a reason-
able amount of time. Using approximate algorithms such 
as metaheuristic algorithms is the main alternative to find 
this solution [7]. Focusing on a relatively simple concept 
and easy implementation, not requiring the gradient infor-
mation, and bypassing most local optima indicate why 
metaheuristic optimization algorithms are more effective 
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than other optimization methods and have become more 
prevalent in engineering applications in recent decades [8]. 
Algorithm of the Innovative Gunner (AIG) [9], Artificial 
Electric Field Algorithm (AEFA) [10], and Quantum Henry 
Gas Solubility (QHGS) [11] are examples of the recently 
developed metaheuristics. Metaheuristics as probabilis-
tic solvers have been applied and developed for solving 
optimization problems in the field of civil engineering, 
such as structural optimization  [12,  13], damage detec-
tion [14, 15], optimal design of retaining wall [16, 17], etc. 
Motivated by the potential application of metaheuristics, 
this study attempts to apply some population-based meta-
heuristics for the optimal design of the curved roof and 
pitched roof portal frames. In the following, some studies 
conducted to optimize the portal frames utilizing meta-
heuristics are reviewed. 

Saka  [18] optimized steel PRFs with haunched rafters 
using Genetic Algorithm (GA). Phan et al. [19, 20] proposed 
Real-Coded Niching GA (RC-NGA) for the design optimi-
zation of cold-form steel portal frame buildings. In 2015, 
they considered stressed-skin action and the semi-ri-
gidity of the joints for the design optimization of a cold-
formed steel portal frame using RC-NGA [21]. McKinstray 
et al. [22] optimized fabricated steel beams for long‐span 
portal frames by GA. They found the optimum dimensions 
of the plates used for the columns, rafters, and haunches 
of these frames. In  2017, Kaveh et  al.  [23] proposed an 
efficient optimization method for the optimal design of 
steel PRFs with tapered members utilizing Colliding 
Bodies Optimization (CBO) and Enhanced Colliding 
Bodies Optimization (ECBO) algorithms. In 2019, Kaveh 
et  al.  [24] applied Enhanced Vibrating Particles System 
(EVPS) algorithm for the optimal design of steel CRFs 
with non-prismatic members. 

In this paper, the discrete optimum design of two 
types of portal frames including planar steel Curved Roof 
Frame (CRF) and Pitched Roof Frame (PRF) with tapered 
I-section members are presented. The main objective of the 
present paper is to compare the optimized PRF and CRF 
with tapered I-section members. Furthermore, the perfor-
mance of the considered metaheuristics in the optimum 
design of these portal frames is compared. The optimal 
design aims to minimize the weight of the frames while 
stratifying some design constraints based on the require-
ments of ANSI/AISC 360-16 and ASCE 7-10. For the 
fair comparison, the geometrical characteristics (height 
and span) of the frames are assumed to be the same, and 
they are compared in two different span lengths: 16.0 m 

and 32.0 m. Optimal design of the frame structures is per-
formed based on linking the existing commercial soft-
ware SAP2000 and MATLAB through Open Application 
Programming Interface (OAPI) feature. Since the frame 
members are non-prismatic, design variables are con-
sidered to be dimensions of the cross-sections at the first 
and end of the frame members. Four different popula-
tion-based metaheuristic algorithms are considered for the 
optimal design of the frames, and their performances are 
compared. These algorithms consist of Teaching-learning-
based optimization (TLBO), Enhanced Colliding Bodies 
Optimization (ECBO), Shuffled Shepherd Optimization 
Algorithm (SSOA), and Water Strider Algorithm (WSA). 
The results indicate that CRF is better than PRF from the 
economic point of view in a fair comparison. Furthermore, 
comparing the results found by considered algorithms 
reveals that SSOA outperforms the other algorithms and is 
more efficient for the optimal design of these portal frames.  

The rest of this paper is structured as follows: 
In Section 2, a description of utilized metaheuristic optimi-
zation algorithms is explained briefly. Section 3 presents the 
mathematical formulation for the discrete structural opti-
mization of the portal frame problem and its design con-
straints. A brief description of structural loading is provided 
in Section 4. In Section 5, design examples and discus-
sions on the obtained results are presented. The concluding 
remarks of this paper are finally driven in Section 6.

2 Metaheuristic algorithms 
In this article, four population-based metaheuristic algo-
rithms are employed for the optimal design of planar steel 
CRFs and PRFs. These algorithms are Teaching-Learning-
Based optimization (TLBO), Enhanced Colliding Bodies 
Optimization (ECBO), Shuffled Shepherd Optimization 
Algorithm (SSOA), and Water Strider Algorithm (WSA). 
These optimization methods are described briefly in the 
following subsections. 

2.1 Teaching-Learning-Based optimization (TLBO)
Rao et al. [25] introduced Teaching-learning-based opti-
mization (TLBO) algorithm based on the learning process 
occurring in the school. Like most of the population-based 
optimizers developed in the literature, TLBO initializes 
with random solutions, each of which is named as student 
or Learner (L). In each iteration of the TLBO, the best 
learner with the highest quality of the solution is named 
as the teacher. This algorithm comprises two sequential 
phases: the teacher phase and the learner phase. These 
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phases are iteratively performed in the iterative body of 
the algorithm to search for the optimum learner. TLBO 
has two parameters: number of learners (nL) as popu-
lation size and maximum number of function evalua-
tions (MaxNFEs) as a stopping criterion. Since these two 
parameters are two prevalent parameters existing in any 
other population-based algorithm, TLBO can be called 
a parameter-less optimizer.  

In the teacher phase, students are updated based on the 
knowledge transfer from a teacher. Thus, the class per-
formance as a normal distribution of grades is improved 
by moving the average position of the students toward the 
best student (teacher). The teacher phase is mathemati-
cally formulated as below: 

L L rand T F ML

i nL j nd
new i old i i j i, , , ;

, , , , , , , ,

= + − ×( )
= … = …

⋅

1 2 1 2
	 (1)

where Lnew,i and Lold,i are respectively the new and old posi-
tions of the student; randi, j is a random number generated 
in the [0,1] interval; T represent the best learner who is 
considered as the teacher; Fi is a teaching factor that can 
be either 1 or 2; ML is the average position of the learners 
in the search space, and nd is the number of design vari-
ables. This phase indicates intensification or global search 
ability of the TLBO algorithm by moving the ML toward 
the teacher.

In the leaner phase, students are cyclically updated 
based on the knowledge transfer from interaction with a 
randomly selected one. This phase can be mathematically 
stated as follows: 
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in which randi, j is a random number generated in the [0,1] 
interval; Li is the ith student; Lrs denotes to a randomly 
selected student (rs ≠ i); f(Li) and f(Lrs) are the objective 
function values of ith and randomly selected students, 
respectively. This phase shows the diversification or local 
search ability of the TLBO algorithm. Because each stu-
dent attempts to find a better position by searching around 
its neighborhood and share information with a student 
selected randomly. 

After each searching phase, the replacement strategy is 
carried out to keep the old learners or replace them with 
the newly generated ones. In this regard, the student with 
the smallest objective function value or better quality is 
preferred to the old student. For further clarity, the pseu-
do-code of the TLBO algorithm is given in Algorithm 1.

2.2 Enhanced Colliding Bodies Optimization (ECBO) 
Colliding Bodies Optimization (CBO) is a simple and effi-
cient population-based metaheuristic algorithm. This opti-
mization method inspires by the one-dimensional collision 
between two bodies. Like TLBO, there are no algorithm-spe-
cific parameters for CBO so that it can be called parame-
ter-less metaheuristic. Although CBO has these advantages, 
it suffers from some shortcomings. In order to alleviate 
these handicaps, Kaveh and Illchi Ghazan [26] developed an 
enhanced variant of the algorithm, namely ECBO. In their 
proposed algorithm, a memory that saves the number of 
the best solutions obtained so far and a  mechanism that 
changes some components of colliding bodies (CBs) are 
used to improve the algorithm’s performance. The memory 
can increase the convergence speed of ECBO compared to 
standard CBO, and the mechanism makes a chance for CBs 
to escape from local optima and prevents unwanted prema-
ture convergence. Like other population-based metaheuris-
tics, ECBO starts from a set of candidate solutions, each of 
which is called as a Colliding Body (CB). These CBs are 
randomly generated within the search space. Thereafter, 
the objective function values of the CBs are evaluated. For 
each CB, a specified mass is defined according to the fol-
lowing equation: 

m
f CB

f CB
i nCBi

i

i

nCB
i

=
( )

( )
= …

=∑
1

1

1 2
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/

/

; , , , ,	 (3)

where f(CBi) represents the objective function value of the 
ith CB, and nCB is the number of colliding bodies. To save 
a number of the best solutions obtained so far, a Colliding 
Memory (CM) is used in the iterative body of the ECBO 
algorithm. For this purpose, the vector of solutions saved 
in CM is added to the current population, and the same 

Algorithm 1 Pseudo-code of the TLBO

Set the algorithm parameters: nL and MaxNFEs
Generate the initial learners randomly in the search space
Evaluate the initial learners

while NFEs ≤ MaxNFEs
Determinate the teacher for the learners
Calculate the mean position of the learners
Generate the new learners using Eq. (1)
Evaluate the new learners
Apply the replacement strategy between the new and old 
learners 
Generate the new learners using Eq. (2)
Evaluate the new learners
Apply the replacement strategy between the new and old 
learners 

end while
Report the best learner found by the TLBO algorithm
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number of the current worst CBs are deleted. Next, the 
CBs are sorted according to the associated masses in 
ascending order. In the next step, CBs are divided into 
two distinct groups: stationary and moving. The first half 
of the objects ( i nCB

= …1 2
2

, , , ) are considered as the station-
ary objects, while the next half of them are assumed to 
be moving objects ( i nCB nCB nCB= + + …

2
1
2

2, , , ). For colliding, 
moving objects move toward to the corresponding sta-
tionary objects. The velocities of stationary and moving 
objects before collision (vi) and after collision (vi') can be 
obtained respectively by the following equations: 

v i nCB
i = = …0 1 2

2
; , , , ,	 (4)
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ε = −1 it
MaxNITs

,	 (8)

in which ε is the coefficient of restitution (COR) decreas-
ing linearly from unit to zero; it is the current iteration 
number of the algorithm; MaxNITs is the maximum num-
ber of algorithm iterations. The ECBO algorithm assumes 
the current position of the stationary objects as the ori-
gin of both stationary and moving objects. Thus, the new 
position of both stationary and moving objects will be 
achieved by adding their new velocities to their current 
positions according to the following equations: 

CB CB rand v i nCB
new i old i i i, ,
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; , , ,= + = … 1 2
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,	 (9)
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where randi generates a uniformly distributed random 
vector in which each component is in the range of [–1,1] 
and the sign "°" is the element-by-element multiplication 
between two vectors. 

In the next step of the ECBO algorithm, a mechanism is 
considered to escape from local optima. To this end, a uni-
formly distributed random number like rni is generated in 
the range of (0,1) for each CBi. This randomly generated 
number is then compared with a parameter like pro within 
(0,1). If rni < pro, one randomly selected component of ith 
CB is regenerated, and its value is changed by:

CB CB rand CB CBij j min ij j max j min= + ×( )−, , , ,	 (11)

where CBij is the ith design variable of the ith CB; CBj,min 
and CBj,max represent the lower and upper bounds of the jth 
design variable, respectively.

The optimization process will be terminated if the 
maximum number of function evaluations (MaxNFEs) as 
a stopping criterion of the ECBO algorithm is reached. 

The pseudo-code of the ECBO algorithm is given in 
Algorithm 2. 

 
2.3 Shuffled Shepherd Optimization Algorithm (SSOA) 
In 2020, Kaveh and Zaerreza [27] developed a new multi- 
population metaheuristic algorithm, namely Shuffled 
Shepherd Optimization Algorithm (SSOA). This algorithm 
is inspired by the herding behavior of shepherds in nature. 
Like the TLBO and ECBO algorithms, SSOA starts with 
randomly generated solutions, each of which is named as 
Sheep (S). Sheep are divided into the nh herds using the 
shuffling process. To this end, first of all, all sheep are 
evaluated and sorted in ascending order based on their 
objective function values. Next, nh of the first sorted sheep 
are selected and assigned randomly to each herd. Thus, 
each herd has one sheep at the first step of forming herds. 
After assigning the first sheep for each herd, the sorted 
sheep from nh + 1 to 2nh are selected and again assigned 
randomly to the herds. Each herd has two sheep at the end 
of forming herds in this step. This process continues until 

Algorithm 2 Pseudo-code of the ECBO

Set the algorithm parameters: nCB, MaxNFEs, size of CM, and pro
Generate the initial CBs randomly in the search space
Evaluate the initial CBs

while NFEs < MaxNFEs
Calculate the mass of each CB using Eq. (3)
Update the CM 
Update the population
Sort the population in ascending order
Create the groups  
Calculate the velocity of each CBs using Eq. (6) and (7) 
Generate the new CBs using Eq. (9) and (10)
Apply escape from local optima mechanism using Eq. (11)
Evaluate the new CBs

end while
Report the best CB found by the ECBO algorithm
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all sheep are given to the herds. All herds have an equal 
number of sheep, and the best and worst sheep of each herd 
are the first and last members of the corresponding herd. 
After forming the herds and assigning the sheep to them, 
the step size can be calculated for each sheep. To this end, 
sheep with better and worse objective function values than 
the considered sheep are selected randomly from the same 
herd. In the SSOA, the considered, better, and worse sheep 
of the corresponding herd are respectively called the shep-
herd (Si, j), horse (Si,h), and sheep (Si,s). In order to guide the 
sheep toward the horse, the shepherd changes his position 
to the sheep and then moves toward the horse. This con-
cept can be mathematically stated as follows:

stepsize stepsize stepsize

i nh
i j i j

sheep
i j
horse

, , ,

, ,..., ,

= +

=1 2 jj nS nh=1 2, ,..., / ,
	 (12)

where nS and nh are the number of the sheep and herds, 
respectively. Moreover, stepsizei j

sheep
,  and stepsizei j

horse
,  are 

calculated as:  

stepsize rand S Si j
sheep

i s i j, , ,= × −( )α 1 
,	 (13)

stepsize rand S Si j
horse

i h i j, , ,= × −( )β 2 
,	 (14)

where rand1 and rand2 are random vectors in which each 
component is in the interval [0,1]; α and β are control 
parameters. They are used to control the exploration and 
exploitation rates of the SSOA, respectively. These con-
trolling parameters are defined as follows: 

α α= −





×max

it
MaxNITs

1 ,	 (15)

β β β β= + −( )×min max min
it

MaxNITs
,	 (16)

where it and MaxNITs are respectively the current num-
ber of iteration and the maximum number of iterations; 
αmax, βmax, and βmin are parameters of the algorithm defined 
by the user. Eqs. (15) and (16) show that if the number 
of algorithm iterations is increased, α decreases linearly 
from αmax to zero, and β increases linearly from βmin to 
βmax. Decreasing α and increasing β provide a good coun-
terbalance between exploration and exploitation capabili-
ties during the course of the optimization process. After 
calculating the stepsize for the sheep of all herds, the new 
position of each sheep is as follows: 

S S stepsizei j
new

i j
old

i j, , ,= + ,	 (17)

In the next step, the replacement strategy is applied between 
Si j
new
,  and Si j

old
, , and the best position of sheep is going to 

the next round of iteration. This process is repeated for the 
sheep of all herd. 

Thereafter, the formed herds are merged together, and 
the sheep are sorted in ascending order based on the objec-
tive function values. Again, the sheep are divided into nh 
herds using the shuffling process. The afore-mentioned 
process is repeated in the cyclic body of the algorithm 
until the algorithm is terminated. Similar to the TLBO and 
ECBO algorithms, the MaxNFEs is considered as the stop-
ping criterion of the SSOA.

The pseudo-code of the SSOA algorithm is given in 
Algorithm 3. 

2.4 Water Strider Algorithm (WSA)
Water Strider Algorithm (WSA), developed by Kaveh 
and Dadras Eslamlou [28], is a new nature-inspired meta-
heuristic algorithm. This population-based swarm intelli-
gent algorithm mimics territorial behavior, intelligent rip-
ple communication, mating style, feeding mechanisms, 
and succession of water striders. WSA is initialized with 
a population of randomly generated solutions in the search 
space. In this algorithm, each candidate solution is consid-
ered as a Water Strider (WS). After the initialization phase 
of the algorithm, the territories are established. Each terri-
tory has at least one mature male (keystone) and few female 
bugs. For assigning nws number of WSs to the nt number 
of territories, the following method is performed. In the 
first step of establishing territories, WSs are evaluated and 
sorted in ascending order of their objective function val-
ues. Then, the population of WSs is orderly divided into 
nws/nt groups. Next, the first WS of each group is selected 
and assigned orderly to the first territory. At the end of the 
first step, the first territory has nws/nt WSs. In the next step, 
the second WS of each group is chosen and placed orderly 
in the second territories. At the end of this step, the second 
territory has the same number of WSs as the first territory. 

Algorithm 3 Pseudo-code of the SSOA

Set the algorithm parameters: nS, nh, αmax, βmin, βmax, and MaxNFEs
Generate the initial sheep randomly in the search space
Evaluate the initial sheep

while NFEs < MaxNFEs
Apply shuffling prosses 
Calculate the stepsize using Eq. (12)
Generate the new sheep using Eq. (17)
Evaluate the new sheep
Apply the replacement strategy between the new and old sheep 
Merge all herds into the single population

end while
Report the best S found by the SSOA algorithm
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The process of establishing territory continues until all WSs 
are assigned to the territories. At the end of last step, the 
territories have an equal number of WSs. It is clear that the 
first and last WSs are respectively the best and worst agents 
within a specified territory, and they are respectively con-
sidered as female and male (keystone). WSs are updated 
cyclically to search the optimum within three sequential 
steps: mating, feeding, and finally succession of keystone. 
Each of these steps is briefly stated as follows: 

2.4.1 Mating
In order to mate, the keystone sends a ripple to an objec-
tive female. She responds to him by sending attraction or 
repulsive ripple signals. Since this answer is unknown, the 
probability of mating is defined. For simplicity, this proba-
bility is assumed to be 50%. The following equation gives 
an equal probability of mating and repelling and updates 
the position of the keystone:

WS
WS R rand if rand p

WS R rand otherwisei
c i

c

i
c

+ =
+ <

+ +( )






1

1

� �

�





,	 (18)

where WSi
it denotes to the position of the ith WS in the cth 

cycle; rand is a random vector which each component is 
generated between 0 and 1, R is a vector obtained as follows: 

R WS WSF
c

i
c= −− −1 1 ,	 (19)

in which WSF
c–1 and WSi

c–1 represent the position of female 
and male WSs in the (c–1)th cycle, respectively. 

2.4.2 Feeding
The keystone uses up a lot of energy whether the mating 
process occurs successfully or not. In the next step, he 
needs a recovery by searching for food sources. For find-
ing the food supplies, the objective function is evaluated. 
If the objective function value is better than that obtained 
in the mating process, he has already achieved enough 
food. On the contrary, if the objective function of the key-
stone is worse than that of in the previous state, the key-
stone should move toward the best WS of the lake (WSBL) 
to look for food availability by the following equation: 

WS WS rand WS WSi
c

i
c

i BL
c

i
c+ = − × −( )1

2 
,	 (20)

2.4.3 Succession of keystone
In this phase, if the quality of the keystone is worse than 
the previous state, the keystone will die since he cannot 
find food. Thus, a new keystone is regenerated randomly 
in the lake as follows: 

WS WS rand WS WSi
c

j min
c

j max
c

j min
c+ = + −( )1

, , , .	 (21)

In the iterative body of the WSA, establishing territories 
with the aforementioned steps is repeated until the stopping 
criterion of the algorithm is met. Similar to the above-men-
tioned algorithms, the MaxNFEs is considered as the stop-
ping criterion of the WSA. For further clarity, the pseu-
do-code of the WSA algorithm is given in Algorithm 4. 

3 Statement of the discrete optimization problem 
The optimization problem definition for the optimal design 
of the frame structures can be stated as follows: 

Find

To minimize

X x x x x

W X
n{ } = … 

{ }( )
1 2 3, , , , ,

: ,
	 (22)

in which {X} is the vector of design variable; n is the num-
ber of design variables, and W({X}) is the total weight of 
the steel frame structures. We know that the presented 
algorithms (i.e., TLBO, ECBO, SSOA, and WSA) were 
developed for continuous search space. However, such 
algorithms can be simply used for discrete optimization 
problems. In this paper, we used the rounding function to 
convert the vector of continuous design variables to dis-
crete design variables. In other words, the vector of design 
variables (i.e., {X} = [x1, x2, x3,..., xn,] in Eq. (22)) gener-
ated by the algorithm rounds to the nearest available value 
using the rounding function.

The objective function presented in Eq. (22) is mini-
mized subjected to the following design constraints: 

Algorithm 4 Pseudo-code of the WSA

Set the algorithm parameters: nws, nt, p, and MaxNFEs
Generate the initial WSs randomly in the search space
Evaluate the initial WSs

while NFEs < MaxNFEs
Establish territories
Calculate the new position of keystone using Eq. (18)
Evaluate him
if the old keystone better than the new one

Calculate the other new keystone using Eq. (20)
Evaluate him
if old keystone better than new one again

Regenerate the keystone randomly in the search space
Evaluate him
Replace the new keystone with the old one 

else 
Replace the new keystone with the old one

end if
else 
Replace the new keystone with the old one
end if

end while
Report the best WS found by the WSA algorithm
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G1 : Check the stability constraint 
G2: Check the buckling constraints
G3: Check the strength constraints
G4: Check the maximum vertical displacement
G5: Check the maximum horizontal displacement

3.1 Checking design constraints of the problem
In the following subsections, the procedure of checking 
design constraints given in Eq. (23) is examined. 

3.1.1 Checking constraint G1

To check the stability of the structure, constraint G1 is 
employed. This constraint is defined based on ANSI/AISC 
360-16 provisions [29]. For checking the stability of a 
structure, the stability index under P-delta effects which 
provide extra forces in the members is calculated accord-
ing to the following equation: 

θ =
P I
V h C
x e

x sx d

∆ ,	 (24)

in which θ is the coefficient of stability; Px denotes to the 
total vertical design load above level x with a maximum 
load factor of 1.0 (kip or kN); Δ represents the design story 
drift happening concurrently with Vx; Ie is the importance 
factor; Vx is the seismic shear force acting between levels 
x and x – 1; hsx is the story height below level x, and Cd is 
the deflection amplification factor. The upper bound of θ 
is determined as:

θ
βmax

dC
= ≤
0 5

0 25
.

. ,	 (25)

where β is the ratio of shear demand to shear capacity for 
the story between levels x and x – 1. It is worth mention-
ing that β is allowed to be conservatively taken as 1.0. 
If θ ≤ 1.0, P-delta effects are not required to be consid-
ered. If 1.0 < θ ≤ θmax, the incremental factor related to the 
P-delta effects on member forces and displacements should 
be determined by the rational analysis. Alternatively, it is 
allowed to multiply member forces and displacements by 
1.0/(1 – θ). Otherwise, if θ > θmax, the structure is poten-
tially unstable and should be redesigned [29, 30].

3.1.2 Checking constraint G2

This constraint checks the buckling of the structural elements. 
According to the ANSI/AISC 341-16 [30] requirements for 
designing slender compression members, the logical and 
practical width-to-thickness ratios (i.e., Eqs. (26) and (27)) 
must be fulfilled so that the buckling does not occur.

b tf f/ £18 ,	 (26)

h t E Fw y/ . /£ £0 4 260 .	 (27)

3.1.3 Checking constraint G3

This constraint checks the strength of all sections accord-
ing to the requirements of ANSI/AISC 360-16 [29]:   

P
P

M
M

if
P
P

P
P

M
M

u

c n

u

b n

u

c n

u

c n

u

b n

2
1 0 0 2

8

9
1 0

φ φ φ

φ φ

+ − ≤ <

+








 − ≤

; . ,

; iif
P
P
u

c nφ
≥ 0 2. ,

	 (28)

where Pu is the required strength (tension or compression); 
P̅n is the nominal axial strength (tension or compression); 
ϕc is the resistance factor (ϕc = 0.9 for tension, ϕc = 0.85 
for compression); Mu is the required flexural strength; M̅ n 
represents the nominal flexural strength, and ϕb is the flex-
ural resistance reduction factor (ϕb = 0.90). The following 
equation calculates the nominal tensile strength:

P A Fn g y= × ,	 (29)

in which Ag is the gross cross-sectional area of the mem-
ber and Fy is specified minimum yield stress. The nominal 
compressive strength of a member is computed as: 

P A Fn g cr= × ,	 (30)
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, 	 (33)

where Fcr is the critical stress of the member, Fe is elas-
tic buckling stress; E is the modulus of elasticity, r is the 
radius of gyration, L is the laterally unbraced length of the 
member, and k is the effective length factor.

3.1.4 Checking constraint G4 
The maximum vertical displacement is checked by this 

constraint as follows:

∆V
VL
R− ≤ 0 ,	 (34)

(23)
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in which ΔV is the maximum vertical displacement of apex 
in CRF or roof in the PRF; L is the span length of the CRF 
or PRF, and RV represents the allowable vertical displace-
ment and equal to 1/360 and 1/240 under the deal and live 
loadings, respectively. 

3.1.5 Checking constraint G5 
This constraint checks the maximum horizontal displace-
ment by the following equation:  

∆H
HH
R− ≤ 0 ,	 (35)

where ΔH is the maximum horizontal displacement of the 
eaves point in the CRF or PRF; H is the height of the col-
umn, and RH represents the allowable horizontal displace-
ment and equal to H/200 under all loadings. 

To handle all the constraints mentioned above, the pen-
alty approach is used. In this regard, if these design con-
straints are not violated, the value of the penalty will be 
equal to zero. On the contrary, if each of the design con-
straints is violated, the penalty is considered for the objec-
tive function as follows:

f X W X ppenalty
i

nte

i{ }( ) = { }( )× +












=
∑1

1

,	 (36)

where nte is the number of structural elements, and pi is 
the penalty for the ith member, which can be calculated as 
follows: 

p
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, 	 (37)

in which r > 1 is the stress ratio. 

3.2 Optimum design of the structures using  
SAP2000-OAPI
The optimum design of the structure is an optimization 
problem where the solution can be the optimal size for the 
structural members (sizing optimization), optimal coordi-
nate for the structure nodes (shape optimization), or opti-
mal size and connectivity between structural members 
(topology optimization). In this paper, we are going to 
find the optimal size for structural members of the PRF 
and CRF. This problem can be solved as an optimization 

task using Eq. (36). For the purpose of finding the value 
of the vector {X} in Eq. (36), metaheuristic algorithm as 
a  powerful and reliable optimization tool is selected to 
minimize fpenalty{X}. 

For analyzing the structural model and obtaining some 
necessary information to check design constraints, we link 
SAP2000 and MATLAB software via the Open Application 
Programming Interface (OAPI) feature. The  flowchart of 
finding the optimal size for structural members based on 
SAP2000-OAPI and the metaheuristic algorithm is pre-
sented in Fig. 1. According to this figure, first of all, the 
metaheuristic algorithm's parameters, such as population 
size and maximum number of function evaluations as ter-
mination criterion, are set. After that, the population of can-
didate solutions (algorithm agents) is initialized randomly. 
The randomly initialized solutions are generated in the con-
tinuous form. However, as mentioned before, here, we deal 
with discrete search space in which the design variables of 
the optimization problem are selected from the discrete set. 
Accordingly, the rounding function is employed to convert 
the generated solutions from continuous to discrete, and the 
solutions round to the nearest discrete available value. Thus, 
the obtained values are discrete ones that compose our ini-
tial sections. At  the same time, the model of the structure 
is also initialized in SAP2000. Using the OAPI feature, we 
access the SAP2000 software through MATLAB to change 
the sections of the initial model. By considering this, the 
initial sections obtained from MATLAB are assigned to 
members modeled in SAP2000. The model is then ana-
lyzed to get the forces of the members. In the design stage, 
the necessary information required to check the problem's 
design constraints (as mentioned in Section 3.1) is deter-
mined. By obtaining the required information, these con-
straints are checked in MATLAB environments. If each 
design constraint is violated, it will be penalized accord-
ing to Eq. (37). It should be noted that the value of W({X}) 
is obtained from the SAP 2000. By determining the value 
of W({X}) and 

i

nte

ip
=
∑

1
 in Eq. (36), the value of the objective 

function, which indicates the total weight of the structure, 
is obtained. After that, we will go to the main loop of the 
metaheuristic algorithm, which is implemented iteratively 
until the stopping criterion is satisfied. In each iteration, the 
vector of design variable {X} is updated by the metaheuris-
tic algorithm. In other words, since we deal with the popu-
lation-based metaheuristic algorithm, each algorithm agent 
generates new values for the components of the vector {X} 
in each iteration. Then, each value of this vector is con-
verted to the discrete value by rounding function, and the 
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process mentioned above is repeated until the new value 
for the objective function is found. This process continues 
in the cyclic body of the algorithm for all agents, and it will 
be terminated when the stopping criterion of the algorithm 
is reached. Finally, the best values for the components of 
the vector {X} is reported as the best solution found by the 
metaheuristic algorithm. 

4 Structural loading
4.1 Load combinations
Some load combinations must be considered for the 
design of steel portal frames. According to the ASCE/SEI 
7-10 [31] requirements, the following equation is assumed 
for designing members of the frames. These combinations 
are defined for vertical loads (i.e., dead, live, and snow) 
and lateral loads (i.e., seismic and wind). 

1.	 1.4D
2.	 1.2D + 1.6L + 0.5(S or R)
3.	 1.2D + 1.6 (S or R) + (L or 0.8W)
4.	 1.2D + 1.0W + L + 0.5 (S or R)		  (38)
5.	 (1.2 + 0.2SDS)D + E + L + 0.2S
6.	 0.9D + 1.0W
7.	 (0.9 + 0.2SDS)D + E

4.2 Vertical loads
4.2.1 Dead loads
The dead and collateral loads (D) consist of the self-weight 
of the structure and the weight of the roof purlins and pan-
els with a mass equal to 14.65 kg/m2, as shown in Table 1. 
In this case, the effects of collateral loads are not consid-
ered, so it is assumed zero. 

Fig. 1 The flowchart of finding the optimal size of structural members based on SAP2000-OAPI and the metaheuristic algorithm
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4.2.2 Live loads 
According to the ASCE/SEI 7-10, the live loads acting on 
the roof beams are almost 100 kg/m2. The summary of live 
loads is given in Table 2. 

4.2.3 Snow load
There are two different types of snow load in these struc-
tures. The balanced and unbalanced snow loads. The flat 
snow load (Pf) and the balanced snow load (Ps0) are calcu-
lated as follows: 

P C C I Pf e t s g= 0 7. ,	 (39)

P C Ps s f0 = ,	 (40)

in which Ce is the exposure factor, Ct is the thermal factor, 
Is is the importance factor, Pg is the ground snow load, and 
Cs is the roof slope factor. Table 3 gives the details of the 
necessary parameters for calculating the snow load. In our 
design examples, the roof slope is taken a value lower than 
30 degrees. Thus, the value of Cs will be obtained equal to 
1.0 according to the code. Fig. 2 shows how the distribu-
tion of balanced and unbalanced snow loads is calculated. 

4.3 Lateral loads 
4.3.1 Seismic load
For calculating the seismic load, first, the seismic base 
shear is calculated:

V C Ws= ,	 (41)

where W is the effective seismic weight, and Cs is the seis-
mic response coefficient obtained as follows:

C
S
RSIs
DS

e
= ,	 (42)

where SDS is the design spectral response acceleration 
parameter in short period range, R is the response mod-
ification factor, and Ie is the importance factor. Since the 
site of the investigated design examples is placed in Clay 
County of Kansas in the United States of America, the 
summarized calculation of the Cs is given in Table 4. 

4.3.2 Wind load 
In order to calculate the wind load for low-rise buildings, 
first, the wind pressure should be obtained:

q K K K V N mz Z Zt d= ( )0 613
2 2

. / ,	 (43)

in which KZ represents the velocity pressure exposure 
coefficient, KZt denotes to the topographic factor, Kd is 
the wind directionality factor, and the V is the basic wind 
speed. qh is the velocity pressure at height h (average 
height of roof) obtained as follows: 

q K K K V N mh h Zt d= ( )0 613
2 2

. / .	 (44)

According to Table 27.3-1 in ASCE 7-10, Kh is obtained 
as follows:

K h
h =


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


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2 01

274 32

2
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.

.

.
in metric ,	 (45)

where h is the average height of the roof, and Kh is a func-
tion of the average height of the roof so that its value is 
changed by altering the slope of the roof.

Table 1 The dead load parameters

Dead load (kg/m2) 14.65

Loading width (per m) 6.0

Frame distributed dead load (kg/m) 87.85

Table 2 The live load parameters

Live load (kg/m2) 100

Loading width (per m) 6.0

Frame distributed live load (kg/m) 590

Table 3 The snow load parameters

Ce 1.0

Ct 1.0

Is 1.0

Pg (kg/m2) 98

Pf (kg/m2) 69

Cs 1.0

Table 4 The summarized calculation of

SDS 0.2768

R 4.5

Ie 1

0.041C
S
RIs
DS

e
=

Fig. 2 Calculation of balanced and unbalanced snow load
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The design wind pressures for the frame system of an 
enclosed and partially enclosed rigid building at all heights 
are calculated as below:

P qGC q GCP i Pi= − ( ) ,	 (46)

in which q is velocity pressure (kg/m2); G is the gust-ef-
fect factor; Cp is the external pressure coefficient calcu-
lated according to Table 5 for PRFs and Table 6 for CRFs; 
qi is velocity pressure for internal pressure determination, 
and GCpi is the internal pressure coefficient. For q and qi, 
we have: 

•	 q = qz for windward walls evaluated at height  above 
the ground.

•	 q = qh for leeward walls, side walls, and roofs evalu-
ated at height h.

•	 qi = qz for the positive internal pressure evaluation 
in partially enclosed buildings in which the height z 
is defined as the level of the highest opening in the 
building that could affect the positive internal pres-
sure. For positive internal pressure evaluation (qi) 
may conservatively be evaluated at height h.

•	 qi = qh for the windward wall, side walls, leeward wall, 
and roof of enclosed buildings and negative internal 
pressure evaluation in partially enclosed buildings.

Table 7 summarizes the details of wind load parame-
ters that need for calculating wind load parameters of the 
examined design examples. 

5 Design examples  
In this section, two design examples of symmetric portal 
frames including steel CRF and PRF with different span 
lengths are examined. The design of the portal frames 
is mostly performed for a two-dimensional frame due to 
repeating a series of transverse frames braced longitudi-
nally. The span length of the portal frames for the first 
and second design examples are considered as 16.0  m 
(L = 16.0 m) and 32.0 m (L = 32.0 m), respectively. The 
geometrical shape of the portal frames for the first and 
second design examples are illustrated in Figs.  3 and  4, 
respectively. The columns and rafters of the design exam-
ples are web-tapered I-section with the same flange width, 
and the inside and outside of the flange thickness also 
have an equal value. In the analysis and design of the por-
tal frames, the connections between columns and base 
plates are considered as pin-jointed. However, the con-
nections between columns and rafters are assumed as 

moment-resisting. The nodal geometry of the members 
is given based on the neutral axis of the members. The 
design examples are located in Clay County from Kansas 
in the United States of America. 

TLBO, ECBO, SSOA, and WSA algorithms are con-
sidered for finding the best, mean, and worst optimum 
weight of the design examples, and the obtained results 
of the algorithms are compared. For all algorithms, pop-
ulation size and the maximum number of function evalu-
ations (MaxNFEs) are equal to 20 and 4000, respectively. 
The internal parameters of ECBO, SSOA, and WSA are 
according to the literature: ECBO, size of CM  =  2 and 
pro = 0.3; SSOA, nh = 4, αmax = 1, βmin = 2, and βmax = 3; and 
WSA, nt = 10, and p = 0.5. According to the Fig. 5, 13 and 

Table 5 The coefficient of  in two orthogonal directions of wind for PRFs

No. Case The directions of wind Cp

Transverse wind direction 
(Case 1)

Windward wall 0.8

Windward roof -0.7

Leeward roof -0.5

Leeward wall -0.5

Transverse wind direction 
(Case 2)

Windward wall 0.8

Windward roof -0.18

Leeward roof -0.5

Leeward wall -0.5

Table 6 The coefficient of in two orthogonal directions of wind for CRFs

Rise-to-Span 
Ratio, r

Windward 
quarter Center half Leeward 

quarter

0 < r < 0.2 -0.9 –0.7 – r -0.5

0.2 ≤ r < 0.3 1.5r – 0.3 –0.7 – r -0.5

0.3 ≤ r ≤ 0.6 2.75r – 0.7 –0.7 – r -0.5
* r is the rise-to-span ratio

Table 7 Details of wind load parameters for each design example

wind load parameters The first design 
example

The second design 
example

Kz 0.89 0.89

KZt 1.0 1.0

Kd 0.85 0.85

V 90 mph (40.234 m/s) 90 mph (40.234 m/s)

h 26.57 ft 53.14 ft

G 0.85 0.85

GCpi ± 0.18 ± 0.18

qz 15.834 psf 15.834 psf

qh 16.232 psf 18.782 psf

qi 16.232 psf 18.782 psf

r 0.0093 0.0093
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Fig. 3 Geometrical shape of the first design example with L = 16.0 m

Fig. 4 Geometrical shape of the second design example with L = 32.0 m

Fig. 5 The considered design variables for the optimal design of steel (a) CRF and (b) PRF
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12 design variables are considered for the optimal design 
of steel CRFs and PRFs, respectively. The characteristics 
of the design variables are shown in this figure. For both 
investigated examples, the values for the thickness of web 
and flange, the web height, and flange width should be 
selected from the discrete set as given in Table 8. 

The characteristic and number of design variables are 
fixed when the span length of the portal frames is increased 
from 16.0 m to 32.0 m. In this article, the material den-
sity, modulus of elasticity, yield stress, and poison ratio 
of the all examined design examples are ρ = 7850 kg/m3, 
E = 2.1 × 106 kg/m2, Fy = 2520 kg/m2, and ν = 0.3, respec-
tively. The final results of the metaheuristic algorithm in 
each independent run are not the same with those found 
in other executions. Because they are stochastic solvers. 
In this regard, 20 independent runs are executed for each 
case study of this article. The considered algorithms are 
coded in MATLAB environment, and the analysis and 
design of the examples are performed based on the exist-
ing commercial software SAP2000-OAPI. 

5.1 Discussion and results for the frames with L = 16.0 m 
Table 9 compares the optimization results acquired by 
TLBO, ECBO, SSOA, and WSA algorithms for the first 
design example. The optimization results are optimal sec-
tions and statistical measures including best, worst, mean, 
and standard deviation. Each algorithm was run 20 times 
to get statistically meaningful results. From Table  9, the 
mean weights attained by TLBO, ECBO, SSOA, and 
WSA for CRF are 1789.07 kg, 1798.14 kg, 1773.54 kg, and 
1803.21 kg, respectively. As seen, the mean weight found 
by SSOA outperformed the mean weight obtained by other 
algorithms. For the PRF, these weights are 2064.78  kg, 
2012.28 kg, 1993.09 kg, and 2037.9 kg, respectively. Again, 
this result reveals that SSOA found the mean weight lighter 
than other utilized algorithms. In terms of finding the best 
optimum weight for the CRF, ECBO is ranked first, and 
the best optimum weight found by SSOA is slightly inferior 
to the results found by ECBO. However, in PRF, ECBO, 
SSOA, and WSA found an equal value (i.e., 1882.39 kg) for 
the best optimum weight. Figs.  6 and  7 present the final 

Table 8 The values of design variables for investigated portal frames

Design examples
The first design example The second design example

CRF and PRF with L = 16.0 CRF and PRF with L = 32.0

Thickness of web and flange T = {8, 10, 12, 15, 20, 22, 25} T = {10, 12, 15, 20, 22, 25, 30, 35, 40}

Web height WH = {200, 210, 220, …, 690, 700} WH = {200, 210, 220, …, 1490, 1500}

Flange width FW = {200, 210, 220, …, 490, 500} FW = {200, 210, 220, …, 590, 600}

Table 9 Comparison of results of different optimization methods for the first design example

Design variables
CRF PRF

TLBO ECBO SSOA WSA TLBO ECBO SSOA WSA

WT1 8 8 8 8 8 8 8 10

WT2 8 8 8 8 8 8 8 8

FT1 15 15 15 15 15 15 15 20

FT2 8 8 8 8 8 8 8 8

FW1 220 220 220 210 210 210 210 200

FW2 200 200 200 200 310 310 310 290

WH1 200 200 200 200 200 200 200 210

WH2 200 200 200 200 220 200 200 200

WH3 490 490 490 420 440 480 480 600

WH4 200 210 210 200 210 200 200 200

WH5 250 230 240 440 400 360 360 200

WH6 360 380 350 480 480 430 430 250

WH7 390 350 400 500 - - - -

Best Weight (kg) 1672.14 1669.71 1670.99 1707.76 1901.81 1882.39 1882.39 1882.39

Worst Weight (kg) 1910.92 1913.52 1868.29 1866.49 2282.42 2281.88 2281.34 2281.85

Mean Weight (kg) 1789.07 1798.14 1773.54 1803.21 2064.78 2012.28 1993.09 2037.9

Standard Deviation 69.627 76.2658 66.727 57.9758 70.6406 87.7254 92.999 127.52
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Fig. 6 The final structural weight in each independent run for the steel CRF of the first design example obtained by (a) TLBO, (b) ECBO, (c) SSOA, 
and (d) WSA

Fig. 7 The final structural weight in each independent run for the steel PRF of the first design example obtained by (a) TLBO, (b) ECBO, (c) SSOA, 
and (d) WSA
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structural weights found by the investigated algorithms 
in 20 independent runs for CRF and PRF, respectively. 
Figs.  8 and 9 show the convergence histories of TLBO, 
ECBO, SSOA, and WSA for the CRF and PRF, respec-
tively. A zoomed section is added to the convergence histo-
ries to simplify the comparison of the utilized algorithms. 
A close examination of these figures illustrates that the 
convergence speed of WSA and ECBO algorithms is con-
siderably more than TLBO and SSOA in the early itera-
tions. However, SSOA reached the lowest average weight 

in both frames at the end iterations of the optimization pro-
cess. Fig. 10 presents a comparison between the structural 
weight of CRF and PRF. As can be seen, the CRF with the 
same height and span gives a lower structural weight than 
PRF. Thus, the optimized results reveal that CRF is more 
economical than PRF. The obtained stress ratios of mem-
bers of both frames for the best optimal design utilizing 
optimization algorithms are reported in Fig. 11. 

5.2 Discussion and results for the frames with L = 32.0 m
The optimized weight of the second design example 
acquired by TLBO, ECBO, SSOA, and WSA algorithms 
are compared in Table 10. As can be seen from this table, 
the average weights of CRF attained by TLBO, ECBO, 
SSOA, and WSA algorithms are respectively 7783.62 kg, 
7731.3 kg, 7530.4 kg, and 7675.39 kg, while the average 
weights of PRF found by these algorithms are 12280.9 kg, 
12182.9 kg, 11507.5 kg, and 12057.5 kg, respectively. Thus, 
it can be concluded that the average weight of both frames 
obtained by the SSOA outperformed other investigated 
algorithms. Moreover, the best weight of CRF is obtained 
by the TLBO, while the best weight of PRF is found by 

Fig. 9 Comparison of the convergence histories from TLBO, ECBO, 
SSOA, and WSA metaheuristic algorithms for the steel PRF of the first 

design example

Fig. 8 Comparison of the convergence histories from TLBO, ECBO, 
SSOA, and WSA metaheuristic algorithms for the steel CRF of the first 

design example

Fig. 10 Comparison of the portal frames of the first design example 
in terms of (a) the best structural weight and (b) the average structural 

weight
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Fig. 11 The obtained stress ratios from different optimization algorithms for the best optimum design of the first design example: (a) CRF and (b) PRF
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Table 10 Comparison of results of different optimization methods for the second design example

Design variables
CRF PRF

TLBO ECBO SSOA WSA TLBO ECBO SSOA WSA

WT1 10 10 10 10 12 20 10 15

WT2 10 10 10 10 10 10 10 10

FT1 15 15 15 15 30 30 30 30

FT2 12 12 12 12 15 15 15 15

FW1 480 480 480 470 360 350 340 360

FW2 250 250 250 230 540 510 560 560

WH1 200 200 210 220 200 200 240 200

WH2 460 440 460 500 390 330 300 290

WH3 1160 1100 1180 1290 700 1120 540 870

WH4 610 550 620 660 200 300 310 200

WH5 220 290 230 230 730 350 990 420

WH6 470 580 490 520 940 340 1210 590

WH7 560 670 580 600 - - - -

Best Weight (kg) 7310.62 7343.64 7366.46 7375.23 11343.9 11616.9 11287.6 11362.9

Worst Weight (kg) 8979.15 8441.08 7918.12 8650.9 13766.7 12748.7 12011.7 13225.2

Mean Weight (kg) 7783.62 7731.3 7530.4 7675.39 12280.9 12182.9 11507.5 12057.5

Standard Deviation 376.416 300.34 122.213 332.611 559.753 334.92 222.721 434.038

Fig. 12 The final structural weight in each independent run for the steel CRF of the second design example obtained by (a) TLBO, (b) ECBO, 
(c) SSOA, and (d) WSA
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Fig. 13 The final structural weight in each independent run for the steel PRF of the second design example obtained by (a) TLBO, (b) ECBO, 
(c) SSOA, and (d) WSA

Fig. 14 Comparison of the convergence histories from TLBO, ECBO, 
SSOA, and WSA metaheuristic algorithms for the steel CRF of the second 

design example

Fig. 15 Comparison of the convergence histories from TLBO, ECBO, 
SSOA, and WSA metaheuristic algorithms for the steel PRF of the 

second design example
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SSOA again. The final structural weights of steel CRF and 
PRF obtained by TLBO, ECBO, SSOA, and WSA algo-
rithms in 20 independent runs are depicted in Figs.  12 
and 13, respectively. Convergence curves of the utilized 
algorithms for the CRF and PRF are compared in Figs. 14 
and 15, respectively. Like the previous design example, 
although the convergence rate of ECBO and WSA are 
more than TLBO and SSOA in the early iterations, SSOA 
outperforms other algorithms in terms of finding the aver-
age weight in both frames. A comparison between the 
structural weight of CRF and PRF is performed in Fig. 16. 
Again, the results reveal that the CRF is better than the 
PRF with the same height and span from the economic 
perspective. Fig.  17 reports the obtained stress ratio of 
members of both portal frames for the best execution of 
the considered algorithms. 

6 Conclusions
Optimal design of two types of portal frames comprising 
planar steel Curved Roof Frame (CRF) and Pitched Roof 
Frame (PRF) with tapered I-section members are studied in 
this article. The optimal design aims to minimize the weight 
of these frame structures while satisfying some design con-
straints based on the requirements of ANSI/AISC 360-16 
and ASCE 7-10. In order to optimize the design of these 
types of portal frames, the existing commercial software 
SAP2000 and MATLAB are linked via Open Application 
Programming Interface (OAPI) feature. Two main objec-
tives are examined in this paper. The first one is related to 
comparing the optimization results of CRF and PRF struc-
tures with the same dimensions for heights and spans. In this 
case, the frame structures are compared in two different span 
lengths, which are 16.0 m and 32.0 m. The second objective 
of the present research is to investigate the efficiency of four 
population-based metaheuristic optimization algorithms for 
optimal design of the CRF and PRF structures. The inves-
tigated metaheuristics are Teaching-learning-based optimi-
zation (TLBO), Enhanced Colliding Bodies Optimization 
(ECBO), Shuffled Shepherd Optimization Algorithm 
(SSOA), and Water Strider Algorithm (WSA). The obtained 
results enable us to draw the following conclusions: 

•	 CRF structures are considerably more economical 
than PRF structures in both investigated design exam-
ples, and the optimized weights obtained in CRF struc-
tures are lower than those found in PRF structures. 

•	 The SSOA metaheuristic is more efficient than other 
considered algorithms due to finding the lightest 
weight in the average of runs. Thus, it is highly recom-
mended for the optimal design of these types of portal 
frames.
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Fig. 17 The obtained stress ratios from different optimization algorithms for the best optimum design of the second design example: (a) CRF and (b) PRF
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