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Abstract

The HL-Reliability Index is utilized to investigate the applicability of several linear and nonlinear response surface models based on 

design experiments techniques to evaluate the safety under random loading, against bearing capacity failure of shallow foundations 

resting on c-φ soils with multivariate correlated variables. The reliability results obtained using FORM/SORM coupled with these models, 

are checked by Monte Carlo simulation method. It is demonstrated that the application of these models significantly reduces the 

execution time and memory requirements, with the central composite design scheme being the most accurate. It is also concluded, that 

consideration of correlation, significantly affects the reliability index for large values of soil friction angle uncertainty. The reliability index 

is found to be highly sensitive to uncertainties of soil friction angle more than the cohesion and the loading which have approximately 

the same influence, especially for the case of lognormally distributed variables. In addition, the probabilistic results show that reliability 

index decreases substantially with the increase of the applied pressure, and that there is significant difference between the reliability 

indices values computed, based on the assumption of normal distribution as compared to lognormal distribution, especially for the 

lower ranges of applied loading.
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1 Introduction 
Although most of research work on the behavior of shal-
low foundations is essentially of deterministic nature, 
there is a growing attention to the development and use 
of probabilistic methods to assess the reliability and per-
formance of foundations against bearing capacity failure 
under uncertain soil and loading conditions. To accom-
plish this task, a reliability index criterion is usually uti-
lized as a measure of system safety. Alternatively, a fail-
ure probability criterion can be also used as an indicator 
of system failure. Normally, a reliability index value in the 
range of 3.0 (i.e., probability of failure Pf = 1.3 · 10

–3) to 4.0 
(i.e., Pf = 3.17 · 10

–5) is accepted for good performance of 
the system in a given environment and loading conditions.

Probabilistic investigations of shallow foundations on 
both cohesive soils (e.g., [1–3]) and cohesionless soils 
(e.g., [4, 5]) including granular materials (e.g., [6, 7]) have 
been performed by different researchers. Moreover, safety 
assessments of shallow foundations resting on c–φ soils 
have been carried out by various authors (e.g., [8–10] just 

to name a few). In this case, however, it is to be noted that 
contrary to sandy or clayey soils, characterized by only 
one strength parameter, the ultimate bearing capacity and 
hence the safety of shallow foundations, resting on c–φ 
soils, is essentially a function of its inherent resistance to 
both frictional and cohesive shear.

Reliability index can be computed by various proba-
bilistic methods including essentially Point Estimation 
Methods PEM  [11], First and Second Order Reliability 
Methods (FORM and SORM)  [12], First and Second 
Order Second Moments methods (FOSM, SOSM) [13, 14] 
and MCS method [15]. Contrary to the above approximate 
methods, MCS results can be used to calculate not only the 
statistical moments but also the PDF of the output response. 
The method is generally more accurate than the above 
mentioned methods because it requires the PDF's of the 
system or component variables to be prescribed. However, 
it should be pointed out that, when using MCS or its vari-
ants [14] the reliability index cannot be computed directly 
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and is generally evaluated indirectly from the probability 
of failure Pf as follows β = Φ–1(1 – Pf) where Φ

–1 is the 
inverse of the standard normal cumulative distribution. 

Further, it is important to note that reliability index esti-
mated using the FOSM or SOSM methods is not "invari-
ant" as alternative but equivalent performance functions 
lead in general to different values of reliability index [13]. 
In this work, and for reliability evaluation purposes, use 
will however be made of Hasofer and Lind index βHL, 
(defined in the standard normal space, as the shortest dis-
tance from the origin of the random variables to the limit 
state surface). This invariant definition is widely used in 
reliability studies and can be cast into a matrix formula-
tion [16]. If need be, probability of failure Pf can be calcu-
lated using the formula Pf = Φ(–βHL). However, when using 
SORM, the following formula Pf  =Φ(–βHL)(1  +  κjβHL) 
should be used in order to account for the curvature of the 
response surface at the most probable design point MPP 
(see e.g., [13, 17] for more details). It should also be noted 
that for non-normal distributions, input soil and loading 
parameters need to be transformed into equivalent normal 
variables using the Rackwitz and Fiessler procedure [18].

When performing reliability studies of shallow foun-
dations, it is to be noted that the choice of the determin-
istic model of ultimate bearing capacity (see e.g., [19–21]) 
in order to determine the reliability index of foundation 
is crucial. As a matter of fact, probabilistic analyses used 
in conjunction with Terzaghi's Nγ bearing capacity factor 
constitute a formidable numerical task because deriva-
tives for variances by first- and second-order methods are 
laborious, not to say extremely difficult (e.g., [5, 22]). 

On the contrary, the use of second order response sur-
face models in establishing highly accurate functional 
relationships between dependent ultimate bearing capac-
ity and input soil variables, allows to compute quickly and 
precisely these derivatives and hence the reliability index. 
These numerical aspects are advantageously utilized in 
the present work to efficiently extract the desired safety 
information thus reducing both CPU time and memory 
requirements as opposed to the excessive computational 
efforts required by MCS method.

The paper is organized as follows: Uncertainties of soil 
and loading characteristics are briefly described in Section 2. 
A brief background on the Response Surface Methodology 
is provided Section  3. The overall results of reliability 
analysis of foundation safety on c–φ soils with multivar-
iate correlated variables are presented in Section 4, while 
the results of a sensitivity analysis of reliability index to 

statistical distributions and uncertainties of random soil 
and loading variables are examined in Section 5. Finally, 
the paper closes with a summary of the key findings and 
the main conclusions in Section 6.

2 Uncertainties of soil and loading characteristics
Soil and loading properties are characterized by several 
uncertainties. These uncertainties can significantly impact 
the safety of foundations and may lead in some instances 
to both foundation and structural failures [23].

Reliability analysis of foundations under random load-
ing, on soils with multivariate correlated variables requires, 
among others, that coefficient of variation (CoV) of geo-
technical and loading variables as well as correlation coef-
ficient (ρ) between random pairs of input soil variables, to 
be known. These dimensionless parameters represent con-
venient measures of data dispersion around the sample 
mean, and correlation among pairs of input soil variables, 
respectively [13]. 

Among soil characteristics, angle of internal friction, 
cohesion and soil unit weight are the most frequently 
used random variables as they are specifically related to 
soil bearing capacity and hence to reliability analysis of 
shallow foundations. When sufficient data is not avail-
able, CoV values of these variables can be estimated based 
either, on published values accessible in specialized litera-
ture or on the classical "Three sigma rule" [24]. 

•	 Within the rather limited range of common values of 
the angle of friction φ for cohesive- frictional soils 
(20° ≤ φ ≤ 40°), CoVφ varies typically between 2 and 
5%. [25] and may be as large as 15% [23]. 

•	 For the effective cohesion, the coefficient of variation 
varies between 10 and 70% [8]. 

•	 For the soil unit weight, the coefficient of variation 
may be as large as 10% [26] or even larger [23]. 

In this paper, the illustrative values used for the coef-
ficient of variation of input soil variables are as follows: 
CoVφ = 5–15 %; CoVc = 10–30%; CoVγ = 10%. The illustra-
tive values of correlation coefficients (ρij,i ≠ j; i,j = φ, c, γ) 
used in the present study are summarized in Table 1 in 
accordance with typical values found in literature [27]. 

•	 As regards uncertainties in loading, the coefficient 
of variation of applied pressure q, is considered in 
this work, to vary from 10% to 30%. Further, it is 
assumed that there is no correlation between loading 
and soil variables.
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3 Background on response surface methodology
In this work, several algorithms based on experimen-
tal designs to model linear and nonlinear response sur-
faces are investigated in the aim to calculate the reliability 
index. The basic idea of RSM methodology is to approx-
imate the output response by a polynomial equation of 
low order using multiple regression analysis and approx-
imate function relationship between dependent output Y 
(the vector of observed response) and input random coded 
variables xi, i = 1, …, k with k number of random variables.

The following approximate explicit relationship has 
been employed in this work:
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where Y is the observed response, b0, bi, bii and bij are 
regression coefficients and ε represents error involved in 
neglecting other sources of uncertainties. The regression 
coefficients bb0, bi, bii and bij can be determined efficiently 
by regression analysis using responses at some specific data 
points called experimental sampling points [23]. The num-
ber of regression coefficients is p = 2k + 1 for Eq. (1) with-
out cross terms and p = (k + 1) (k + 2)/2 for Eq. (1) includ-
ing cross terms. 

The least squares method is used to determine the esti-
mator of b as given by Eq. (2).

b x x x Y� � ��t t1̂ ,	 (2)

where x is the experiment matrix in coded space (see 
Appendix A) and xt is its transpose.

The prediction model is then given by Eq (3):
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Since the natural variables Xi are usually expressed in 
different units, their effects are only comparable if they 
are converted in coded variables xi using the relationship 
x
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, with max(Xi)  =  mean(Xi)  +  hσi and 

min(Xi) = mean(Xi) – hσi, where h is an integer and σi are 
the standard deviations of input variables (xi). Eq (3) can 
then be used to finally write the 2nd order response surface 

prediction model in terms of natural variables. Further, 
in order to examine the adequacy of the fitted model, 
a normal probability plot should be approximately along 
a straight line. In addition, computed values of coefficients 
of multiple determinations (R²) and adjusted R², also give 
information on the adequacy of the fitted model, where 
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�� �²  with L, total number of observations [28].
Saturated Design (SD), Box-Behnken Design (BBD), 

Central Composite Design (CCD) are experimental designs 
schemes which are often used to generate experimental 
sampling points for fitting 2nd order surfaces. Excellent 
descriptions of these methods can be found in [28]. 

In order to optimize the response parameters, each 
parameter in the experimental design is studied at five dif-
ferent levels (–α, –1, 0, +1, +α). The choice of five lev-
els for each variable is required by this design in order to 
explore the region of the response surface near the opti-
mum. Saturated design (SD) and central composite design 
(CCD) are the most widely used experimental designs to 
model respectively second order response surfaces with-
out and with cross terms.

A CCD scheme (illustrated in Fig. 1, for k = 3 variables) 
is composed of Nf = 2

k factorial points, 2k axial points 
(±α,  0,  0,  …,  0), (0,  ±α,  0,  …,  0), …, (0,  0,  …,  ±α) and 
a number of replications chosen at the center of the domain 
(0, 0, 0, …, 0) or central points, with α = (Nf)

1/4. 
As regards the bearing capacity problem, three inde-

pendent input soil variables φ, c, γ are studied (see the table 
in Section 4.2). Therefore, for k = 3, it would take 8 cubic 
points, 6 axial points (with 2 axial points on the axes of 
each random variable at distance α from the central point) 
and 1 central point. This makes a total of 15 experiments 
necessary for a fully quadratic second order polynomial 
model. Using three variables α = 1.68. The variables cho-
sen in the context of this study are in coded and natural 
symbols: friction angle (x1, X1), cohesion (x2, X2) and soil 
unit weight (x3, X3). The bearing capacity based on shear 
failure criterion is the response variable.

Table 1 Correlation coefficient between pairs of input soil parameters

Coefficient of Correlation (ρij,i ≠ j; i,j = φ, c, γ) ρφc ρcγ ρφγ

Case 1 Uncorrelated 0 0 0

Case 2 Weak correlation -0.25 0.25 0.25

Case 3 Moderate correlation -0.50 0.50 0.50

Case 4 Strong correlation -0.75 0.75 0.75

Fig. 1 Central Composite Design scheme (in coded space for k = 3) 
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4 Reliability analysis of foundation safety on soils with 
multivariate correlated variables 
The performance function of shallow foundations resting 
on c–φ soils can be obtained using a bearing capacity for-
mula. One of the most commonly used equations for bearing 
capacity analysis is Terzaghi's equation, with Meyerhof's 
approximations for bearing capacity factors Nc, Nq and Nγ 
all expressed in terms of friction angle  [29]. Shape sc, sq 
and sγ and depth dc, dq and dγ factors are described in [21].

q cN s d D N s d BN s dult c c c f q q q� � �� � � � �0 5. ,	 (4)

where, qult is the ultimate bearing capacity, Df the embed-
ment depth and B is the width of the strip foundation. 

In this work, a shallow strip foundation of width 
B =1.5 m at a depth Df = 1.0 m, resting on a cohesive fric-
tional soil is considered. The values of input soil and load-
ing properties for conventional and reliability analysis are 
presented in Table 2.

Based on the mean values of input soil properties, the 
mean value of ultimate bearing capacity of foundation is 
calculated to be as 1388.53 kPa. For a safety factor equal 
to 3.0, the allowable bearing capacity qallowable of founda-
tion soil is qallowable = 462.84 ≈ 460 kPa.

4.1 Comparison between probabilistic methods 
Based on performance function given by Eq. (5), below

g c D q c D qf ult f allowable� � � �, , , , , ,� � � � � � ,	 (5)

where g(φ, c, γ, Df) > 0 denotes safety while g(φ, c, γ, Df) < 0 
represents unsafe condition.

Table 3 shows reliability index values using MCS and 
SORM for k = 4 normal random variables φ, c, γ, Df . It is 
seen that value of reliability index β using SORM coupled 
with CCD experimental scheme for fitting fully quadratic 
response surface model (abbreviated hereafter as RSM-
CCD) is the most accurate experimental design scheme, 
with comparable CPU times, when compared to SD and 
BBD schemes. In addition, the RSM-CCD results are in 
excellent agreement with those of Monte Carlo simula-
tion technique contrary to results obtained from saturated 
design (RSM-SD with (k + 1)(k + 2)/2 and (2k + 1) sample 
points). It is also noted that results based on experimen-
tal RSM-BBD are acceptable while RSM linear and RSM 
linear + interaction terms for fitting response surfaces 
with 2k sample points should be discarded when compared 
to MCS results. 

Table 2 Statistical properties of random input soil and loading variables

Input soil and loading variables µ σ Xmin* Xmax* CoV (%) Distribution

Cohesion (c), kPa 12 3.6 6.08 17.92 30 Normal

Friction angle (φ), ° 33 1.65 30.29 35.71 5 Normal

Unit weight (γ), kN/m3 15.8 1.58 13.20 18.40 10 Normal

Depth of foundation (Df), m 1 0.1 0.84 1.16 10 Normal

Applied pressure (q), kPa 460 92 308.67 611.33 20 Normal
* The upper and lower limits Xmax and Xmin respectively are based on the assumption that input soil and loading parameters follow Normal distribution 
with probabilities of 5% and 95% being exceeded. 

Table 3 Reliability index against bearing capacity failure using MCS, RSM methods for k = 4 random variables with the following statistical 
characteristics (μφ =33°– CoVφ = 5%; μγ =15.8 kN/m

3– CoVγ = 10%; μc =12 kPa – CoVc = 30%; μDf = 1 m – CoVDf = 10%)

Method:
Design scheme: MCS RSM
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β Error
3.69 3.05 3.20 3.31 3.98 3.85 3.71

- 17.34% -13.20% -10.43% 7.94% 4.32% 0.61%
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Linear 2k: g b b X
i

n

i i� � �

�
�0

1



SD(2k + 1): g b b X b X
i

n

i i
i

n

ii i� � � �

� �
� �0

1 1

2 

Linear +interaction 2k: g B b X b X X
i

n

i i
i

n

j i

n

ij i j� � � �

� �

�

� �
� ��0

1 1

1

1



BBD + CCD + SD: g B b X b X b X X
i

n

i i
i

n

ii i
i

n

j i

n

ij i j� � � � �

� � �

�

� �
� � ��0

1 1

2

1

1

1





Chemali and Tiliouine
Period. Polytech. Civ. Eng., 67(2), pp. 485–494, 2023|489

It is also significant that the CPU time required for gen-
erating the reliability index by MCS using Meyerhof's 
equation (1796.07 sec) was 1674 times that needed for 
RSM-CCD (1.0728 sec), using a laptop with the following 
characteristics: Intel® Core™ i5 CPU M 520 @ 2.40 GHz. 
On the basis of these results, we will consider in what fol-
lows only the CCD experimental scheme (unless indicated 
otherwise) for performing reliability analyses.

4.2 Results from Response Surface Method obtained 
from Meyerhof's equation
A preliminary sensitivity calculation reliability index 
shows that for the range of variation of the input variables 
φ, c, γ, Df , the bearing capacity problem with k = 4 vari-
ables can be reduced essentially to problem with k = 3 vari-
ables φ, c, γ using MCS method with a percentage error on 
β not exceeding 4%. On this basis only the soil variables 
φ, c, γ will be considered in the safety assessment of the 
bearing capacity problem using Meyerhof's equation.

Table 4 shows a single replicate central composite 
design for constructing response surface for ultimate bear-
ing capacity using fully complete quadratic response sur-
face model based on 15 combinations of input soil vari-
ables and corresponding output response qult obtained from 
Meyerhof equation. 

Based on Meyerhof's formula Eq. (4) and CCD scheme, 
the 2nd order response surface equation for bearing capac-
ity is found to be as:

q c

c
ult � � � � �

� � �

14402 882 8 197 0 96 5 13 445

0 124 0 024 7

2

2 2

. . . .

. . .

� � �

� 7726 4 434 0 0001�� � �� �. . .c c
	 (6)

By plotting the parity curves (see Fig 2(a)), giving the 
predicted values (Eq. (6)) versus of the experimental values 
(Table 4), it can be seen that results obtained from the 2nd 
order response surface model are in excellent agreement 
with those of design experimental results. The approxi-
mately straight line in the normal probability plot shown 
in Fig. 2(b) and the computed values of R² and R²adj equal 
to 99.92% and 99.85% respectively, confirm the adequacy 
of the 2nd order RSM-CCD fitted model noted that these 
values of R² and R²adj are very close to 100% indicating 
that most of the variability in bearing capacity is explained 
by the 2nd order, fully complete quadratic response surface 
model. Using second order second moment SOSM [16], the 
mean (σqult) and standard deviation (μqult) values of bearing 
capacity (i.e., qult) obtained are 1412.63 kPa and 363.37 kPa, 
respectively.

Table 4 Single replicate central composite design CCD showing 15 
combinations of input soil variables (k = 3) and corresponding bearing 

capacity obtained from Meyerhof's equation

No 
Exp Combination

Variables
qult (kPa

φ (°) c (kPa) γ (kN/m3)

1 –  - – 30.28 6.06 13.19 691.20

2 –  - + 30.28 6.06 18.41 873.66

3 – + – 30.28 17.94 13.19 1142.40

4 – + + 30.28 17.94 18.41 1324.86

5 + – – 35.72 6.06 13.19 1391.72

6 + – + 35.72 6.06 18.41 1793.56

7 + + – 35.72 17.94 13.19 2129.46

8 + + + 35.72 17.94 18.41 2531.31

9 –α 0 0 28.42 12 15.8 820.29

10 +α 0 0 37.58 12 15.8 2525.58

11 0 –α 0 33 2.01 15.8 907.74

12 0 +α 0 33 21.99 15.8 1869.31

13 0 0 –α 33 12 11.42 1163.70

14 0 0 +α 33 12 20.18 1613.35

15 0 0 0 33 12 15.8 1388.53

(b)
Fig. 2 (a) Comparison of experimental and predicted values of qult; 

(b) Normal probability plot for qult using RSM-CCD model

(a)
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A 3D representation for qult using Eq. (4) is shown in 
Fig. 3(a) while contour plots for qult obtained from RSM-
CCD and Eq. (4) are presented in Fig. 3(b). It is clearly 
observed that for the range of expected variation of input 
soil parameters considered in the present study, the results 
of RSM-CCD are practically coincident with the contour 
plots obtained from Meyerhof's equation, and that the 
nonlinear fully complete quadratic RSM-CCD of ultimate 
bearing capacity is highly accurate.  

4.3 Effect of correlation of soil parameters on 
reliability index against bearing capacity failure
To illustrate the effect of correlation on the reliability 
index, Table 5 presents the results of the reliability index 
βHL calculated using SORM for the above selected values 
of statistical parameters and for various values of the cor-
relation coefficient ρ = 0, 25, 50 and 75% corresponding to 
case 1, case 2, case 3 and case 4, respectively, assuming 
normal and lognormal distributions of input soil variables. 

It is observed that the variations in coefficient of cor-
relation have a considerable effect on the reliability index, 
particularly when the correlation coefficient is large 

(ρ  =  0.75; case 4). For example, for CoVφ  =  10% and 
ρ  =  0.75 (case 4) assuming correlated normal input soil 
variables, βHL = 3.29 (i.e., Pf = 0.0501%) whereas βHL = 2.71 
(i.e., Pf = 0.3364%) when ρ = 0 (case1). This represents an 
increase of 21.4 % in βHL (i.e., a decrease of 85% in Pf). 
For the same values of uncertainties of input soil variables 
but for the case of lognormal distribution, the increase 
in βHL is equal to 21.85% (i.e., a decrease of 98% in Pf). 
Further, it is clear that the reliability index decreases sub-
stantially with increasing values of CoVφ for both normal 
and lognormal distributions. Also, these results show that 
probability of failure is a more sensitive indicator of the 
effect of correlation than reliability index.

Similarly, from Fig. 4, it is seen that for the case of nor-
mal distribution (ND) of input soil variables, reliability 
index slightly increases for increasing values of |ρij|, but 
decreases significantly with increasing values of CoVφ. 
It also can be noted that consideration of correlation 
between input soil parameters marginally affects the reli-
ability index values for the lower values of CoVφ. Similar 
trends are also observed for the case of lognormal distri-
bution (LND) of input soil variables, but with higher reli-
ability index values.

(b)
Fig. 3 (a) 3D representation for qult using Eq. (3); (b) Contour plot for 

qult obtained from RSM-CCD model and Eq. (3)

(a)

Table 5 Reliability index βHL failure assuming normal (ND) and 
lognormal distributions of uncorrelated and correlated input soil 

parameters (μφ = 33°; μγ = 15.8 kN/m
3, CoVγ = 10%, μc = 12 kN/m

3, 
CoVc = 30%) 

CoVφ 
(%)

Case 1 Case 2 Case 3 Case 4

ND LND ND LND ND LND ND LND

5 3.93 4.97 4.02 4.97 4.04 5.05 4.06 5.11

7 3.41 3.96 3.56 4.06 3.70 4.23 3.81 4.54

10 2.71 3.02 2.87 3.14 3.06 3.33 3.29 3.68

15 1.95 2.13 2.05 2.23 2.18 2.38 2.33 2.64

Fig. 4 Reliability index of ultimate bearing capacity for normal (ND) and 
lognormal (LND) distributions of input soil variables (μφ = 33° – CoVφ 
= 5–15%; μγ = 15.8kN/m

3 – CoVγ = 10%; μc = 12 kPa – CoVc = 30%)
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5 Sensitivity analyses of reliability index 
5.1 Sensitivity of reliability index to normal and 
lognormal distributions of soil and loading variables 
The main results of the study of the influence of random 
applied pressure q for two statistical distributions (normal 
and lognormal) on the safety of the foundation are summa-
rized in Table 6. The Hasofer–Lind reliability index βHL, 
the corresponding design points (φ*, c*, γ*, q*) for differ-
ent values of random applied pressure varying from small 
values up to ultimate applied pressure qult, are presented 
using Eq. (7).

g c q q c qult� � � �, , , , ,� � � � � � 	 (7)

It is clearly observed from Table 6 that the reliability 
index decreases with the increase in the applied pressure 
until it vanishes for an applied pressure equal to the mean 
value of ultimate bearing capacity. This case corresponds 
to a deterministic state of failure for which safety factor 
F = 1 obtained for the mean values of the random variables. 
The corresponding failure probability is equal to 50%. 

Note also that for the lower applied pressures there is 
a significant difference between the βHL values obtained 
when using normal and lognormal statistical distributions 
of input soil and loading variables. However, this differ-
ence reduces for the higher range of applied pressure until 
the mean value of ultimate bearing capacity. It is further 

noticed that MPP values of applied pressure q* on the foun-
dation and the reliability index βHL are significantly higher 
for lower range of applied pressure when assuming lognor-
mal distribution of input soil and loading proprieties.

5.2 Sensitivity of reliability index to reduction of 
number of random variables 
Table 7 presents results of sensitivity analysis of reliability 
index to successive reductions of number of random vari-
ables. It is seen that the 4-variable (φ, c, γ, q) problem can 
be reduced to a 3-variable problem including shear strength 
and loading parameters (φ, c, q) with equally important 
sensitivities: –0.58, –0.55 and 0.60, respectively, and a per-
centage error on βHL less than 3%. We also observe that for 
the case of 2 random variables φ and q can be discarded in 
practice. The sensitivity factors αXi 

(Xi = φ, c, γ, q) convey 
the relative importance of the random variables in affect-
ing reliability and can be calculated using Eq. (8)

� �X
i X i

n

i X
Xi i

g
X

g
X

� �
�
�

�
�

�
�

* *

/ ²

1

,	 (8)

where X* is design point.

5.3 Sensitivity of reliability index to uncertainties in 
loading and soil shear strength variables 
To study the effects of soil shear strength variability and 
loading randomness on Reliability index, Fig. 5 shows 
the Reliability index versus the coefficients of variation 
of shear strength and loading variables. The value of the 
safety factor is taken equal to 3 (µq = 460 kPa). The results 
show that the reliability index is highly influenced by the 
coefficient of variation of friction angle more than the 
cohesion and the loading which have approximately the 
same influence. This means that the accurate determina-
tion of these parameters is key in obtaining meaningful 
probabilistic results. Similar trends (not shown in the fig-
ure) are also observed for lognormal random variables but 
with significantly higher βHL values.

Table 6 Reliability index β values, corresponding design points and 
failure probabilities from ultimate bearing capacity criterion for different 

applied pressures ((μφ = 33° – CoVφ = 5%; μγ = 15.8 kN/m
3 –  

CoVγ = 10%; μc = 12 kPa – CoVc = 30%; CoVq = 20%)

Applied 
pressure q 

(kPa)
σq φ* c* γ* q* βHL

Normal variables

300 60 29.03 0.76 13.94 436.81 4.70

460 92 29.74 4.91 14.58 651.39 3.57

600 120 30.44 7.16 14.94 809.39 2.75

800 160 31.31 9.22 15.28 998.89 1.82

1000 200 32.02 10.52 15.51 1155.47 1.08

1200 240 32.58 11.40 15.68 1285.79 0.48

1388.53 277.71 33.00 15.80 12.00 1388.53 0.00

Lognormal variables

300 60 29.20 7.28 14.36 685.66 5.23

460 92 30.15 8.26 14.77 817.36 3.72

600 120 30.78 8.94 15.01 916.57 2.80

800 160 31.49 9.75 15.27 1042.85 1.81

1000 200 32.07 10.43 15.46 1157.13 1.06

1200 240 32.57 11.02 15.61 1263.13 0.46

1376.73 275.35 33.00 15.80 12.00 1376.73 0.00

Table 7 Sensitivity analysis of reliability index to reduction of number of 
variables (μφ = 33° – CoVφ = 5%; μγ = 15.8 kN/m

3 – CoVγ = 10%; μc = 
12 kPa – CoVc = 30%;  μDf  = 1 m – CoVDf = 10%;  μq = 460 – CoVq = 20%)
Number of 
variables αφ αq αc αγ βHL

error 
(%)

SORM 4variables 
(φ, c, γ, q) -0.55 0.58 -0.55 -0.22 3.57

SORM 3 variables 
(φ, c, q) -0.58 0.60 -0.55 - 3.67 2.80%

SORM 2 variables 
(φ, q) -0.70 0.72 - - 4.58 28.29%
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The probabilistic results presented in Fig. 6, show that 
the allowable pressure on the foundation varies from 
354  kPa to 515  kPa for CoVφ  =  5%, from 216  kPa to 
351 kPa for CoVφ = 10% and from 130 kPa to 235 kPa for 
CoVφ = 15% in order to achieve reliability index βHL val-
ues in the range of 3 to 4, as indicated in the shaded region. 
It is also seen that allowable pressure calculated from 
Meyerhof's classical formula for ultimate bearing capacity 
for a safety factor equal to 3.0 (i.e., qall = 460 kPa) is sat-
isfactory only in the case of CoVφ = 5% as it is associated 
with required range of reliability index β(3–4).

Similarly, it can be shown in Fig. 7 that the allowable 
pressure on the foundation Meyerhof's classical formula 
for ultimate bearing capacity for a safety factor equal to 
3.0 is in the present case satisfactory in all cases of CoVq 
(10%–30%), as it is associated with required range of reli-
ability index β(3–4).

Further, it can be noticed that the probabilistic results 
obtained from RSM-CCD model are practically coinci-
dent with those obtained from MCS method. However, 
it should be noted that the number of simulations required 
by RSM- CCD algorithm (2k + 2k + 1) which for k  =  4 
variables (φ, c, γ, q) leads to 25 simulations as opposed 
to 150000 Monte Carlo simulations necessary to achieve 
a  stable value of CoVPf = 5% considered in the present 
study. It follows that a considerable advantage of using the 
RSM- CCD algorithm is in terms of execution CPU time 
and memory requirements.

6 Conclusions
The work presented in this paper investigated essentially 
the applicability of several 2nd order Response Surface 
Models in conjunction with Meyerhof's determinis-
tic model, to evaluate the safety under random loading, 
against bearing capacity failure of shallow foundations 

resting on c–φ soils with multivariate correlated vari-
ables. A comparison of reliability results obtained using 
MCS technique with those of 2nd Order Response Surface 
Models based on design experiments coupled with SORM 
has been performed. Also, the implications of possible 
cross-correlation between pairs of input soil parameters 
on foundation safety against bearing capacity failure have 
been examined for both normal and lognormal distribu-
tions. Moreover, the effects of soil variability and loading 
randomness on foundation safety have been analyzed. 

From the results presented in this study, the following 
conclusions may be drawn: 

•	 Results from experimental design techniques show 
that CCD is more accurate (with practically compa-
rable CPU times) than BBD and SD when compared 
to MCS results. Values of reliability index of linear 
and linear + interaction terms showed marked devi-
ations from Monte Carlo simulation results, suggest-
ing that these models should be discarded in practice.  

Fig. 5 Reliability index versus different levels of uncertainties using 
normal distribution (μφ = 33°, μc = 12 kPa, μq = 460 kPa)

Fig. 6 Results of the reliability analysis using RSM-CCD model and 
MCS, versus applied pressure for different CoVφ (μφ = 33°;

μγ = 15.8 kN/m
3 – CoVγ = 10%;  μc = 12 kPa – CoVc = 30%; CoVq = 20%)

Fig. 7 Results of the reliability analysis using RSM-CCD 
model and MCS, versus applied pressure for different CoVq 

(μφ = 33° – CoVφ = 5%; μγ = 15.8 kN/m
3 – CoVγ = 10%;  

μc = 12 kPa – CoVc = 30%)
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•	 It is also shown, that consideration of correlation sig-
nificantly affects the reliability index for the large 
values of soil friction angle uncertainty. Contrary 
to sandy soils, the hypothesis of commonly used 
assumption of uncorrelated input parameters is found 
to be conservative comparatively to that of correlated 
parameters. 

•	 The reliability index is found to be highly sensitive 
to uncertainties of soil friction angle more than the 
cohesion and the loading which have approximately 

the same influence, especially in the case of lognor-
mal variables. This means that the accurate determi-
nation of these uncertainties is key to obtain mean-
ingful probabilistic results.

•	 The probabilistic results show that reliability index 
decreases importantly with the increase of the applied 
pressure, and that there is significant difference 
between the reliability indices computed, based on the 
assumptions of normal and lognormal distributions, 
especially for the lower ranges of applied loading. 
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Appendix A

Experiment matrix x for k = 3 coded variables. 

x

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 68 0 0 2. ..

. .
. .

. .

82 0 0 0 0 0
1 1 68 0 0 2 82 0 0 0 0 0
1 0 1 68 0 0 2 82 0 0 0 0
1 0 1 68 0 0 2 82 0 0 0 0
11 0 0 1 68 0 0 2 82 0 0 0
1 0 0 1 68 0 0 2 82 0 0 0
1 0 0 0 0 0 0 0 0 0

. .
. .
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