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Abstract

The artificial neural network (ANN) modeling is used to analyze the impact of two different cathode morphologies urchins (α-MnO2 ) 

and flower (δ-MnO2 ), on the charge/discharge voltage in lithium air batteries (LABs). Previous research has focused on ANN models 

for traditional lithium-ion batteries (LIBs) without accounting for varied cathode morphologies in LABs. This research presents an 

ANN modeling technique to predict the charge/discharge voltage LAB using manganese oxide as cathode materials with two distinct 

morphologies. For modeling Specific capacity use as the input variable, to perform a comprehensive analysis to validate charge/

discharge voltages. This study explores multiple ANN configurations with varying neuron counts, identifying the optimal architecture 

(10  neurons in hidden layers) that balances prediction accuracy and efficiency. This systematic exploration provides insights into 

ANN tuning for LABs, which is a topic with limited coverage in existing literature. The ANN predicted results closely matched with the 

reported experimental work with the coefficient of determination R2 = 0.9998 for almost all models. The models performance was 

assessed by various error metrics mean absolute deviation (MAD), root mean square error (RMSE) and average absolute relative error 

(AARE). This study provides empirical validation of the model's robustness. The study highlights the applicability of ANN in capturing 

complex LAB performance metrics, such as the non-linear behaviors due to morphological differences.
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1 Introduction
Global warming is elevated due to the usage of exces-
sive fossil fuels. The growing need for sustainable, ecof-
riendly energy sources is driven by the need to reduce 
dependence on fossil fuels, which contributes to pollu-
tion, resource depletion and rising costs. Transitioning to 
renewable energy and minimizing high-pollution indus-
tries are essential for mitigating environmental and eco-
nomic risks  [1]. Additionally, these conventional fuels 
risk depleting natural resources [1]. A noteworthy devel-
opment has been the exploration and utilization of vari-
ous renewable energy sources, attributes to the efforts of 
researchers worldwide  [2]. Lithium air batteries (LABs) 
are promising energy storage technology, with a theoret-
ical energy density of 3500 Wh/kg, significantly higher 
than 400 Wh/kg of lithium-ion battery (LIB). This makes 
them strong candidate for electric vehicles (EVs) and 
hybrid electric vehicles (HEVs), providing longer oper-
ational performance and potentially replacing petroleum 

as a fuel source. LABs are classified into four types 
based on their electrolytes: aprotic, aqueous, hybrid and 
solid-state electrolyte LABs. Aqueous  LABs are being 
widely studied worldwide. Despite their potential, LABs 
face significant challenges, including low operating volt-
ages, capacity degradation, short cycle life slow oxygen 
evolution/reduction kinetics and increasing overpotential. 
Surpassing the LIBs which is greater than LIBs energy 
density i.e.,  400  Wh/kg. LAB is utilizing the lithium, 
hold an energy density of 11682 Wh/kg and capacity of 
3863  Ah/kg and at 3.0  V. This endures to designate an 
energy efficiency of approximately 1000 Wh/kg.

In a LAB, the anode lithium oxidation response hap-
pens much speedier than the cathode oxygen decrease 
response (OER), and the cathode response over poten-
tial is altogether higher than the anode response  [3]. 
Therefore  leading the overall rate of battery charge/dis-
charge [4, 5]. Because of this, scientists have focused much 
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more on the cathode in LABs than on the anode, result-
ing in many research and development plans worldwide. 
Even though there haven't been any big discoveries lately, 
a lot of progress has still been achieved. The main prob-
lem that stops making practical LAB applications is that 
air cathodes aren't very efficient right now [6]. To enhance 
the performance of cathode material, many structures, 
materials and synthesis processes have been investigating 
for cathode in the last decade [5, 7]. Cathodes with higher 
capacity are significant for electronic market consumer. 
Improved security, enhanced rate capability, lower cost, 
are few main conditions for applications such as HEVs [4]. 
Manganese oxides as cathodes have gained specific con-
sideration because of notable advantages they have, such 
as abundance, less cost, high alkaline activity, high spe-
cific capacity and nontoxic in nature. 

MnO2 exists in different morphological shapes like nano 
tubes, nano sheets, flowers, urchins, and nano spheres [8] 
Extensive studies are conducted to investigate manganese 
oxides as an active cathode material with various morphol-
ogies in LABs. [7, 9, 10]. Safety and life time of battery 
estimation and modeling techniques are important in order 
to progress the performance, Allowing the battery to age, 
will more likely increase the expenses, shorten the life and 
also compromise the battery security. It is very significant 
to accurately estimate the various battery parameters to 
predict the life span of batteries. Development in soft com-
puting and computer science has led to improved attention 
in the progress for predictive modeling for expensive and 
time-consuming investigations [11]. Researchers face chal-
lenges in collecting accurate data for developing new tech-
nologies. Artificial intelligence (AI) particularly machine 
learning (ML) and artificial neural network (ANN), offers 
a promising approach to predicting key LAB performance 
metrics like voltage, capacity and failure points. ANN excel 
at pattern recognition, handling noisy data and adapting to 
environmental changes with applications in LABs, image 
recognition, automation and nonlinear programming. 
However,  ANN development is complex, requiring care-
ful design of network structure, weight initialization and 
thresholds, along with significant data and computational 
resources for training. Support  vector machine  (SVM), 
random forest  (RF), gradient boosting machine  (GBM), 
K-nearest neighbor  (KNN) are few other ML modelling 
techniques. Each model has unique strengths and limita-
tions. ANN are generally the favored choice for apprehend-
ing the non-linear performance and dynamic connections 

in LABs. But, for smaller datasets or where interpretabil-
ity is a concern, RF or SVM could be appreciated substi-
tutes [12, 13]. With prolonged charge/discharge of battery, 
the performance of LAB will progressively reduce, as a 
result of which many safety concerns arise. ANN is super-
vised learning technique that was developed for modelling 
and simulating the learning capacities of biological cells 
and the human brain.  Because of its capacity to compre-
hend complex and nonlinear phenomena, it is considered a 
noteworthy and dependable source that has attracted inter-
est in the field of predictive modelling [14]. ANN excel at 
detecting nonlinear correlations in large datasets, but often 
require substantial training data to make correct predic-
tions. ANN components are inspired by the biological ner-
vous system. These components are arranged in node-con-
nected linking layers. The  input layer, hidden layer, and 
output layer are the three different categories of layers that 
form the working network to improve the capacity and 
capability of the network number of neurons and hidden 
layers must be chosen carefully. The networks and mod-
els are trained and modified to guide the inputs towards 
the desired target output ANN processed of iterating the 
weights till an optimal relation among the output and the 
targets is attained. There are many neural networks avail-
able for the modelling, like general regression neural net-
works (GRNN), feed-forward neural network (FFNN) [15], 
back propagation neural network (BPNN)  [16], recur-
rent network (RN), radial basis function neural net-
work (RBFNN)  [17], long short-term memory networks 
(LSTM)  [18], and probabilistic neural networks (PNN). 
Amongst all models, the FFNN are extensively employed 
for battery modeling areas. It consists of single layer and 
multi-layer perceptron and information is one directional. 
The generated signal by the input layer is transferred to the 
hidden layer. Where the activation function approaches the 
network's biases and weights using a learning model tech-
nique. The output created is referred to as the projected.

The Levenberg-Marquardt (LM) algorithm is efficient 
for training ANNs in LAB modelling, minimizing error 
by adjusting weights and biases. Metrics like root mean 
square error (RMSE), average absolute relative error 
(AARE), and mean absolute deviation (MAD) helps to 
optimize hyperparameters and prevent overfitting ensur-
ing accurate predictions. A systemic approach to hyperpa-
rameter is employed, where number of neurons in hidden 
layer and other model parameters were tested to identify 
the optimal model configuration. Battery parameters such 
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as battery capacity, battery cycle life, charge/discharge 
voltage, state of charge (SOC), state of health (SOH), and 
remaining useful life (RUL) are used for battery testing 
and to analyze battery performance  [19]. The charge/
discharge cycle is crucial for battery performance and 
design optimization. While ML including ANN has been 
widely applied to other batteries like LIBs, its application 
to LABs remains unexplored due to unique LAB nonlin-
ear behavior and electrochemical challenges. This study 
addresses this gap by developing an ANN model specifi-
cally for LABs, laying the groundwork for future research 
and expanding ML role in advanced battery technologies.

Continuous research into enhancing these cycles is 
dynamic for the evolution of battery technology, predomi-
nantly for applications in EVs and renewable energy stor-
age devices. Therefore, the scope of this research is the 
development of an ANN model for the prediction of LAB 
charge/discharge voltage with published experimental 
data [20] experimental data. The two distinct models are 
developed with different numbers of neurons for both the 
cathode material morphologies. The performance of the 
ANN models was assessed using various error metrics, 
including RMSE, AARE, and MAD.

2 Methodology
2.1 Experimental setup
In this research, the most optimal crystalline structures of 
MnO2 for the oxygen reduction reaction (ORR) are built 
on prior literature have been selected. Subsequently, con-
ducted a comparative investigation of these structures as 
electro catalysts for the LAB cathode. The primary scope 
of the study is to assess and equate the catalytic prop-
erties of two different morphologies of MnO2 nanopar-
ticles. Through hydrothermal synthesis, we success-
fully prepared urchin (α-MnO2 ) and flower (δ-MnO2 ). 
The  control of the hydrothermal reaction parameters 
facilitated the achievement of the distinct morphologies. 
The chemicals used for the synthesis of nanoparticles are 
listed in Table 1.

The urchin α-MnO2 nanoparticles were synthesized by 
adding MnSO4 · H2O, K2S2O8 , and H2SO4 to deionized water. 
The solution was then shifted to a Teflon-lined autoclave 
and heated in a preheated oven at 110 °C for 6 h. The brown 
precipitate was then centrifuged, washed, and then dried 
at 60 °C for 8 h. The synthesis of flower δ-MnO2 involved 
transferring a solution of MnSO4 · 3H2O and KMnO4 into a 
Teflon-lined autoclave, heating it in electric oven at 140 °C 
for 2  h, and the brown precipitate was then centrifuged, 

washed, and then dried at 40 °C for 8 h. The nanoparticles 
were obtained from the synthesis process and are then used 
as cathode material for LAB. The battery has been tested 
for charge/discharge cycles limiting the maximum specific 
capacity of 800 mAh/g. Fig. 1 shows the battery voltage vs. 
specific capacity using urchin-shaped α-MnO2. Fig. 2 illus-
trates the same relationship for δ-MnO2. At 100% efficiency, 
a steady discharge/charge profile of 0.8 mAh was attained for 
almost 35 cycles with the urchin-shaped α-MnO2. There is 
a small voltage increase every ten cycles. A constant dis-
charge/charge profile of 0.8 mAh was attained for 20 cycles 

Table 1 List of chemicals used for synthesis [20]

S. No Chemicals Quantity

1 MnSO4 · H2O 0.34 g

2 K2S2O8 0.54 g

3 H2SO4 2 mL

4 MnSO4 · 3H2O 0.2 g

5 KMnO4 0.5 g

Fig. 1 Charge/discharge cycle for urchin morphology [20]

Fig. 2 Charge/discharge cycle for flower morphology [20]
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with efficiency of 100% for δ-MnO2. There was a noticeable 
rise in the overpotential of α-MnO2 catalysts. The instabil-
ity of δ-MnO2 causes an increase in the overpotential after 
20 cycles, worsening the charge curve and encouraging elec-
trolyte disintegration. In order to improve the cycle perfor-
mance the depth of charging and discharging is limited to 
800  mAh/g  [20]. The  two battery parameters used in the 
research are battery voltage and specific capacity over the 
number of operating life cycles of the battery.

2.2 Development of ANN network approach
The ANN approach can predict or estimate parameters 
like SOC, SOH, voltage, operating cycles and current. 
Terminal voltage shows difference throughout discharge 
process interprets the nonlinear behavior of the LAB, and 
this difference greatly effects by the rate of discharge. 
The above-mentioned characteristics of LAB is designated 
by the charge/discharge curve (Figs. 1 and 2). In this study 
experimental data (specific capacity, voltage and number 
of cycles) is collected from  [20] for two different MnO2 
morphologies i.e., urchins and flowers. ANN modeling is 
performed separately for charge and discharge cycle data 
for both urchins and flowers, afterward the charging and 
discharging ANN results are merged for the error func-
tions calculations, for each morphology. The data size is 
huge, therefore a section of dataset is later used to find out 
the validity and robustness of the model. The performance 
of ANN is measured by MSE [21] given below:

MSE
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Here ANN predicted output is referred as YANN , the exper-
imental data as YEXP and number of samples as N. 

Software MATLAB  [22] is used for the ANN mod-
elling. First input and output parameters are selected. 
It  was followed by data preprocessing and normalizing. 
Training: 70%, testing: 15% and validation: 15% is divided 
for the network.  For this study the experimental data 
(i.e., inputs and outputs) are normalized with 0 and 1 value 
to upgrade the functionality of the network. Trial and error 
method is followed to select an optimal structure of ANN, 
applying the cross-validation outcomes everytime to see if 
the performance prediction can be improved. To validate 
the model cross-validation is one of the methods employed 
in this study. This technique splits the entire sample set 
into three parts: the training set, the validation set, and the 
testing set, usually in a fixed ratio. After the initial training 
session, the validation step enhances the training data more, 

and finally, the testing set is used to check the capabilities 
when tested against a new set of data. Parameters used for 
the model are tabulated in Table 2.
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error functions such as AARE, RMSE, MAD, and R2 : 
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3 Results and discussion
The input variable used for the neural network to predict 
the output voltage for charge/discharge cycles is the spe
cific capacity. Five models of different numbers neurons 
(1, 5, 10, 15 and 20) are investigated for each charge and 
discharge data for both morphologies. The ANN predictive 
model is presented in the Fig.  3. The input/output layers 
are interrelated through elements referred as hidden neu-
rons. The determination of number of neurons in the hid-
den layer is based on achieving minimum MSE. To obtain 
the optimal MSE for the trained model, various numbers of 
neurons is assessed, starting with least number. This pro-
cedure allows finding out the optimal value of number 
of neurons. In  this scope of study, the ANN model was 

Table 2 ANN model parameters

Particulars Specifications

Algorithm LM

Network Feed forward neural network

Performance function MSE

Division of data Random

Data size [ 1 × 800 ] 

Input layers 1

Output layers [ 35 × 800] for flowers
[ 20 × 800] for urchins

Hidden neurons Iterative

Learning cycles (Epochs) 1000
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undergoing training and tested for 1, 5, 10, 15 and 20 neu-
rons. The network trained with 10 hidden neurons demon-
strated to have the least value of MSE. It is noted that there 
are little discrepancies among experimental and modelled 
values. The error values illustrate that the predicted values 
are in decent agreement with experimental values.

The smaller the inaccuracy, the bigger is the R2 value 
for the investigational and simulated results as shown in 
Table 3. Besides, the use of R2 the developed ANNs perfor-
mance for charge/discharge voltages was mathematically 

calculated by various error functions types  i.e., RMSE, 
AARE, and MAD, which were considered based on 
experimental and simulated results For urchine morphol-
ogy the error metrics results are presented in Table 4 and 
for flower morphology results are presented in Table 5. 

As tabulated in Table 4, for urchin morphology the errors 
(RMSE, MAD, and AARE) are relatively low in the first 
few cycles (5th and 10th) for the 1 neuron model, which 
suggests that the model captures some level of the electro-
chemical behavior with minimal complexity. However, after 
the 25th cycle, there is an unexpected spike in the error met-
rics in the 35th cycle (RMSE = 0.4401, AARE = 44.97%). 
This sudden spike could indicate that the urchin morphology 
introduces additional complexity, such as clogging, degra-
dation, or irregular lithium plating/stripping behavior that a 
simple 1 neuron model cannot capture over longer cycles. 
Despite  performing well in the earlier cycles, the model 
breaks down when the battery undergoes more extensive 
cycling. After increasing neurons to 5 it showed much better 
stability across cycles, with RMSE remaining very low in 
early cycles (e.g., 5th cycle RMSE = 0.0086). Errors improve 
up until the 25th cycle (RMSE = 0.0061, AARE = 0.095%), 
indicating that this configuration handles the urchin mor-
phology better by modeling the non-linear electrochemical 
processes more effectively. However, by the 35th cycle, the 

Fig. 3 ANN model to predict the charge/discharge voltage of LAB

Table 3 ANN structure for training, validation and testing data for urchins and flower morphologies

Model Neurons
MSE R2

Training Validation Testing Training Validation Testing

U
rc

hi
n 

ch
ar

ge

1 1 1.5198e-2 1.0287e-2 1.5501e-2 9.8105e-1 9.8824e-1 9.8135e-1

2 5 2.0328e-4 2.7224e-4 8.8535e-5 9.9978e-1 9.9976e-1 9.9967e-1

3 10 6.9166e-5 1.4391e-3 1.9156e-5 9.9990e-1 9.9831e-1 9.9998e-1

4 15 2.1324e-3 1.3608e-3 1.5291e-3 9.9747e-1 9.9851e-1 9.9819e-1

5 20 1.3350e-3 1.0217e-4 2.4085e-4 9.9847e-1 9.9988e-1 9.9971e-1

U
rc

hi
n 

di
sc

ha
rg

e 1 1 3.0130e-4 2.6702e-4 1.9850e-4 9.9581e-1 9.9624e-1 9.9712e-1

2 5 5.1651e-5 4.4159e-5 2.7194e-5 9.9994e-1 9.9968e-1 9.9969e-1

3 10 1.6909e-6 8.2766e-7 1.8693e-5 9.9990e-1 9.9997e-1 9.9971e-1

4 15 1.4909e-6 1.7693e-5 8.2765e-7 9.9980e-1 9.9977e-1 9.9998e-1

5 20 9.2801e-6 3.8239e-6 3.0171e-6 9.9972e-1 9.9996e-1 9.9996e-1

Fl
ow

er
 c

ha
rg

e 

1 1 2.4357e-3 2.2376e-3 1.9930e-3 9.9037e-1 9.9242e-1 9.8866e-1

2 5 1.7761e-4 1.4294e-4 1.9443e-4 9.9934e-1 9.9917e-1 9.9920e-1

3 10 5.7951e-5 4.2996e-5 8.6624e-5 9.9979e-1 9.9984e-1 9.9963e-1

4 15 4.7256e-5 3.0240e-5 2.8678e-5 9.9909e-1 9.9989e-1 9.9989e-1

5 20 4.5943e-5 2.2478e-5 4.4486e-5 9.9980e-1 9.9989e-1 9.9983e-1

Fl
ow

er
 d

is
ch

ar
ge

1 1 1.4634e-3 3.2441e-4 2.0885e-4 9.7695e-1 9.9731e-1 9.9366e-1

2 5 9.2041e-5 6.1606e-5 5.3953e-3 9.9864e-1 9.9908e-1 9.4170e-1

3 10 1.1033e-3 3.2013e-5 5.3825e-4 9.8459e-1 9.9922e-1 9.9432e-1

4 15 1.1270e-3 2.7406e-5 1.1500e-5 9.8516e-1 9.9964e-1 9.9939e-1

5 20 1.0278e-3 8.1352e-6 2.2608e-5 9.8295e-1 9.9979e-1 9.9982e-1
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RMSE jumps to 0.0263, and AARE increases dramatically 
to 41.82%, similar to the 1 neuron case. This suggests that 
despite the model's initial ability to predict behavior, com-
plex processes such as capacity fading or parasitic reac-
tions become dominant at longer cycles, which the 5 neu-
ron model struggles to capture. With 10 neurons the model 
showed excellent performance in early cycles (5th  cycle 

RMSE = 0.0019, AARE = 0.043%) exhibiting higher value 
of the  R2 (R2 = 0.99). This suggests that it is very well suited 
for capturing the nuances introduced by the urchin mor-
phology in the early-to-mid stages of cycling. However, by 
the 35th cycle, the model faces similar challenges as seen 
with fewer neurons, with RMSE increasing to 0.0671 and 
AARE jumping to 41.86%. This suggests that the battery's 

Table 4 ANN error validation for urchin morphology

Neurons Cycles RMSE MAD AARE

1

5th 0.05378 0.03636 0.99304

10th 0.02812 0.02102 0.60277

25th 0.03570 0.02483 0.68864

35th 0.44013 0.20959 44.97119

5

5th 0.00859 0.00619 0.17449

10th 0.00713 0.00463 0.13190

25th 0.00610 0.00340 0.09555

35th 0.02635 0.00170 41.81721

10

5th 0.00197 0.00146 0.04311

10th 0.00231 0.00151 0.04547

25th 0.00315 0.00177 0.05321

35th 0.06706 0.00845 41.85923

15

5th 0.11859 0.00467 0.13718

10th 0.01220 0.00496 0.14296

25th 0.01840 0.00447 0.12936

35th 0.17302 0.03350 42.49837

20

5th 0.00627 0.00313 0.09007

10th 0.00577 0.00281 0.07988

25th 0.02805 0.01999 0.67574

35th 0.12815 0.01870 41.98946

Table 5 ANN error validation for flower morphology

Neurons Cycles RMSE MAD AARE

1

1st 0.95611 0.02271 0.68844

10th 0.02792 0.02003 0.60043

20th 0.07727 0.05414 1.49511

5

1st 0.90224 0.62517 15.66858

10th 0.75497 0.14301 14.30361

20th 1.20527 0.84140 19.71740

10

1st 0.00869 0.00186 0.06244

10th 0.00524 0.00190 0.06001

20th 0.02081 0.00632 0.20033

15

1st 0.00610 0.00158 0.05017

10th 0.00346 0.00159 0.04768

20th 0.01539 0.00487 0.14260

20

1st 0.00444 0.00118 0.03737

10th 0.00294 0.00148 0.04449

20th 0.01297 0.00404 0.11282
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electrochemical processes become highly unpredictable at 
longer cycling, and even this model configuration cannot 
account for those complex changes. Changing the configu-
ration to 15 neurons depicted that the model performs rea-
sonably well in early cycles, its initial errors are higher than 
the 10-neuron model (5th cycle RMSE = 0.1186), indicating 
possible overfitting to early cycle data or noise. By the 35th 
cycle, the RMSE and AARE values spike (RMSE = 0.1730, 
AARE  =  42.50%), indicating that the model fails to gen-
eralize and capture the complexity of the long-term behav-
ior of the urchin morphology MnO2 cathode. Similarly  to 
the 10  and 15  neuron models the 20  neuron configura-
tion starts well, with low errors in the 5th and 10th cycles 
(e.g.,  RMSE  =  0.0063 in the 5th cycle). However, by the 
25th cycle, the RMSE jumps to 0.0281, and in the 35th cycle, 
it increases further (RMSE  =  0.1282, AARE  =  41.99%). 
This suggests that increasing the number of neurons beyond 
10 does not necessarily lead to better performance for long-
term cycle predictions and may even cause overfitting in 
earlier cycles. Significant increase in error at the 35th cycle 
across all models indicates that long-term cycling introduces 
complexities that even more advanced models struggle to 
predict, possibly due to degradation mechanisms not cap-
tured in the initial training data.

For flower morphology as tabulated in Table 5, a simple 
model with 1 neuron exhibits high errors in the 1st cycle 
suggesting the  model fails to comprehend the complex 
electrochemical dynamics of the LAB. The flower MnO2 
cathode's morphology and interaction with lithium ions 
are  most likely to introduce nonlinear patterns that the 
1 neuron model is unable to predict accurately. The model 
still performs poorly by the next 10th and 20th cycles, 
thus it suggests that the system's complexity demands 
more refined models to work effectively. While 5 neurons 
configuration performs better than 1 neuron, the increas-
ing RMSE in the 20th cycle suggests the model starts 
overfitting to the training data, losing its ability to gen-
eralize well. This could reflect the highly variable nature 
of the battery's electrochemical performance over time. 
MnO2 cathodes in LAB tend to suffer from issues like pas-
sivation or clogging due to side reactions, which may add to 
the complexity of the model, and struggle to capture with 
only 5 neurons. With the 10 neurons model the RMSE 
dramatically decreases to 0.0087, with MAD and AARE 
showing significant improvement (0.0019  and  0.062). 
The RMSE continues to improve slightly for the 10th and 
20th cycles (0.0052 and 0.0208), with MAD and AARE 

values remaining low, indicating robust predictive perfor-
mance. This proposes that the model is efficiently appre-
hending battery behavior With 15  neurons in 1st cycle 
RMSE is 0.0061, presenting only a marginal increase in 
error compared to the 10-neuron model, while the MAD 
and AARE values continue to indicate high accuracy. 
For the 10th cycle, the performance is like the 10-neuron 
model, maintaining low error metrics, but there is a slight 
increase in the 20th cycle RMSE (0.0154). With 20 neu-
rons the 1st cycle RMSE is at 0.0044, which is the lowest 
among all configurations, suggesting excellent initial pre-
diction capability. The MAD and AARE are also the low-
est (0.0012 and 0.0374). The 10th and 20th cycles maintain 
low RMSE values, though a slight increase is observed in 
the 20th cycle (0.0129). Overall, this model shows the best 
performance, but the differences compared to the 10 neu-
rons model are marginal. LAB involves intricate reac-
tion mechanisms (OER), especially with a high surface 
area MnO2 cathode. The  low RMSE, MAD, and AARE 
suggest that this model configuration accurately pre-
dicts performance across the cycles without overfitting, 
indicating it can handle the complexities of the battery's 
behavior under various operating conditions. Both mor-
phologies demonstrate similarities to the 10  neurons 
model. This may suggest that the battery's behavior, while 
complex, does not require additional neurons beyond 10 
for effective prediction. And graphical representation of 
best-selected neurons  (10) is shown in Figs. 4 and 5 for 
both morphologies. The figures depicts the least error 
among both morphologies at 10  neurons. A  important 
section of the study was the evaluation of the ANN model 
using an independent dataset, which allowed a more rig-
orous test of the model's generalization abilities. The per-
formance of the model was evaluated by using three main 
metrics: RMSE, MAD, and AARE, for various training 
cycles. The predictive results of the model are tabulated 
in Table 6. The ANN model demonstrated strong perfor-
mance in predicting battery characteristics at lower cycle 
counts (5, 15, and 25 cycles), with relatively low RMSE, 
MAD, and AARE values for MnO2 with urchin morphol-
ogy. This indicates that the model was able to generalize 
well to the independent dataset in these initial cycles.

However, as the cycle count increased to 35, a dramatic 
rise in RMSE, MAD, and AARE values was observed. 
This suggests that the model suffered from overfitting, due 
to degradation of battery performance as it can also be 
clearly seen in the experimental data in Fig. 1 that battery 
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stops before reaching the end conditions, where it became 
excessively tailored to the training data, causing a signif-
icant decline in its ability to predict accurately on unseen 
data. For the MnO2 with flower morphology, the model 
performed reasonably well in the early cycles (1 and 10), 
with moderate RMSE and AARE values, indicating accu-
rate predictions on the independent dataset. The  MAD 
values also supported the model's generalization abil-
ity during these cycles. However, a sharp deterioration 
in performance was noted by cycle 20, as can be seen in 
Fig. 2, with noteworthy rises in RMSE, MAD, and AARE. 
Therefore, these models can be considered Robust for the 
prediction of charge/discharge voltage for LAB.

4 Implications of the study
The study suggests that extending the model by incor-
porating additional variables (temperature, current, 

electrolyte composition) improves the predictive accuracy 
and dynamic control of LABs. However, the approach 
may not generalize to other battery chemistry without 
additional training and evaluation due to differences in 
reactions and degradation pathways. Overfitting observed 
during training highlights the importance of techniques 
like early stopping, cross validation and regularization.  
To scale the model for real world applications, expanding 
input features and datasets is essential to capture diverse 
operational conditions and complex LAB behavior.

5 Conclusions
This study employs ANN modelling to analyzed the 
charge/discharge voltage of LAB with two distinct MnO2 
morphologies (α-MnO2 and δ-MnO2 ). 

While ANN has been extensively applied to LIBs. LABs 
present unique non-linear behavior and electrochemical 

Fig. 4 Urchin-comparison of experimental results with ANN prediction (10 neurons model) for 5th, 15th, 25th and 35th cycles
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challenges, making ANN applications in this area largely 
unexplored. This research addresses this gap by developing 
a FFNN tailored to LABs with LM optimization enhanc-
ing model performance. The ANN predicts LAB voltages 
based on specific capacity, with neurons counts (1, 5, 10, 15 
and 20) evaluated. A 10 neuron models proved optimal for 

morphologies, balancing accuracy and complexity while 
achieving excellent predictive performance (R2 = 0.9998). 
The results closely match the experimental data, with 
minimal MAD, RMSE and AARE errors, demonstrating 
ANN's ability to simulate complex electrochemical reac-
tions. This study provides a foundation for further ANN 
applications in LABs, suggesting their potential for advanc-
ing predictive modelling in battery research and optimizing 
LAB performance.
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Fig. 5 Flower-comparison of experimental results with ANN prediction (10 neurons model) for 1st, 10th, and 20th cycle

Table 6 ANN errors validation for independent test data

Morphology Cycles RMSE MAD AARE

Urchins

5 0.00197 0.00155 0.04311

15 0.00204 0.00141 0.05547

25 0.00315 0.00167 0.05331

35 0.05705 0.00844 40.95922

Flowers

1 0.00859 0.00185 0.06244

10 0.00522 0.00209 0.06025

20 0.02161 0.00532 0.18061
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