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Abstract

Eutrophication has a significant negative impact on the ecosystem since it depletes the planet's biological resources and is further 

responsible for climate change. It is caused by both endogenous and exogenous nutrient enrichment. This phenomenon degrades 

the water quality and simultaneously increases the greenhouse gases emission from waterbodies resulting in climate change Inland 

waterbodies contain enormous amounts of nutrients such as phosphorous, nitrogen, and carbon. Thus, it becomes essential to 

restore these nutrients using proper sustainable approaches. Algae-based technologies have received a lot of attention these days 

because of environmentally friendly and inexpensive treatment. About 70% of the nutrient load from wastewater can be removed 

using such technology. The recovered algal biomass after wastewater treatment contains various biomolecules which can be used for 

the producing of value-added products such as bioenergy in the form of biomethane and biodiesel, cosmetics and pharmaceuticals 

along with the synthesis of nanoparticles. Therefore, the primary goal of this review is to inform readers about the possibilities of 

a low-cost integrated biorefinery based on microalgae for resource recovery and to mitigate eutrophication and greenhouse gas 

emission from water bodies.
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1 Introduction
Due to increased urbanization and industrialization, over-
population is causing an increase in environmental deg-
radation around the world. Although human activities 
have advanced civilization to a new level, non-renew-
able sources are rapidly decreasing, and a vast quantity of 
wastewater (WW) is also being generated. WW contains 
a high concentration of organic and inorganic compounds 
like fats, proteins, carbohydrates, nitrate, and phosphate 
etc., along with some toxic compounds. These compounds 
cause water pollution and algal growth in the waterbody. 
Due to the high amount of phosphate and nitrogen in WW, 
algal blooms frequently occur and thus impact the food 
chain. Biotoxins made by algal blooms build up in the food 
chain, from the primary consumer onwards. The rapid rate 
of oxygen depletion resulting from algal respiration inflicts 
severe hypoxic stress on aquatic life, ultimately leading 
to formation of "dead zones". Besides creating the dead 

zones, these algae can be effectively utilized for the pro-
duction of various compound and energy driven molecules. 
Based upon the algal composition, different algae can be 
used to produce biofuels. For example, Nannochloropsis, 
Chlorella, and Botryococcus, are known for their high lipid 
content, which can be converted into biodiesel through 
a  process called transesterification, similarly algae with 
high in carbohydrates, such as Chlorella, Spirulina, and 
Scenedesmus, can be used to produce bioethanol through 
fermentation. Microalgae can also be used to produce bio-
electricity through a process called microbial fuel cell 
(MFC) technology, where bacteria consume the organic 
matter produced by the algae and generate electricity. 
Anaerobic digestion (AD) of certain types of algae, such as 
Cladophora and Ulva, produces biogas, which is primar-
ily composed of methane [1]. Algal biomass has the poten-
tial to produce a high yield of biofuels per unit area, but 
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its high production costs remain a significant barrier to its 
commercialization. The cost of producing algal biofuels is 
influenced by factors such as the cost of algae cultivation, 
harvesting, drying, and conversion to biofuels. The eco-
nomic viability of algal biofuel production can be improved 
by using waste streams or wastewater as a nutrient source, 
as well as by developing more efficient and cost-effective 
harvesting and conversion technologies. The life cycle 
assessment of algal biofuels shows that the economic and 
environmental performance is influenced by factors such 
as cultivation methods, harvesting technique, and process-
ing technology. While algal biofuels have the potential to 
reduce greenhouse gas emissions, their economic viability 
still needs improvement to make them a competitive alter-
native to fossil fuels. Thus, further research is needed to 
identify the most cost-effective and efficient technologies 
for algal biofuel production, and to develop strategies for 
reducing production costs. Additionally, the environmen-
tal benefits of algal biofuels compared to fossil fuels are an 
important consideration. Algal biofuels have the potential 
to reduce greenhouse gas emissions and improve energy 
security  [2]. Moreover, algae cultivation also benefits the 
environment as it consumes CO2 as the carbon source for 
photosynthesis process, thus it can combat CO2 released 
from human activities and reduce the amount of green-
house gases (GHGs)  [3]. Algal biomass can be used for 
carbon capture and storage (CCS) by cultivating algae in 
open ponds or closed photobioreactors and then burying 
the harvested biomass in geological formations or using it 
as a soil amendment. Additionally, the production of biofu-
els from algae can also contribute to carbon sequestration 
by displacing fossil fuels. However, carbon sequestration 
potential of algae needs to be evaluated in the context of 
a life cycle assessment to ensure that the overall environ-
mental benefits are realized  [4]. Microalgae contain high 
levels of antioxidants, vitamins, and fatty acids, mak-
ing them attractive for use in skincare and haircare prod-
ucts. Additionally, microalgae-based ingredients have also 
been used in haircare products to promote hair growth 
and reduce hair damage. A study suggested that the use of 
algae in cosmetics is a growing market and has the poten-
tial to contribute to the economic viability of algal culti-
vation [5]. Indeed, waste biomass, or WW, has stimulated 
the interest of academics/researchers in the pursuit of sus-
tainable resource recovery. The purpose of this review is to 
suggest a potential approach to lowering industrialization's 
negative environmental impact and securing energy gener-
ation through algae.

2 Inland waterbodies – vital resource for life
Water is one of the basic and vital requirements of life 
to thrive on earth. Water is distributed all over the globe 
in different type of water bodies in a very complex man-
ner  [6]. Distribution depends upon the quality of water, 
climatic conditions of region, availability of water, anthro-
pogenic activities, dam construction and several miscel-
laneous factors. Water bodies are home to a variety of 
species and serve as important habitats for fish, birds, 
amphibians and other forms of wildlife. They also provide 
recreational opportunities for people who use them for 
fishing, swimming or boating. Furthermore, these water 
bodies can be used for irrigation purposes and to gener-
ate hydroelectric power. The importance of waterbodies is 
summarized in Fig. 1.

According to Gleick  [7], approximately 71% of earth's 
surface is covered with water. 96.5% of the earth's water is 
stored in oceans. Around 2.5% of the total is fresh which fur-
ther distributed in glacial form (68.7%) followed by ground 
water (30.1%) and surface water (1.2%). The surface fresh-
water breakdown from this 1.2% is displayed as a pie chart 
(Fig. 2). An extra 20.9% of this water is found in lakes, the 
majority of which is covered in ice. 0.49% of the freshwater 
on the surface is found in rivers. Although rivers only make 
up a small fraction of freshwater, they provide a significant 
portion of human water needs. This inland water evolves car-
bon dioxide, methane and nitrous oxide which causes green-
house effect and is one of the major global climatic prob-
lems. 20% of the world's CO2 emissions from fossil fuels 
come from GHG emissions from lakes and impoundments 
(9.3 Pg C-CO2 yr–1)  [8]. C-CO2 represents carbon dioxide 
equivalent (CO2eq) emissions in terms of carbon (C) con-
tent. Increased in population, urbanization, industrial expan-
sion has adversely affected the inland waterbodies such 
as lakes, ponds, rivers etc. These impoundments are easy 
target for dumping waste and thus discharge of treated or 
untreated waste promotes eutrophication. Inland waters are 
essential for human life, but they are also vulnerable to the 
effects of climate change. As global temperature rises, lakes 
are becoming increasingly threatened by rising greenhouse 
gas emissions. Recent studies show that the levels of carbon 
dioxide and other greenhouse gases in the atmosphere have 
increased by over 40% since pre-industrial times  [9–11]. 
This is causing inland waterbodies around the world to 
become more acidic and warmer, with serious implications 
for aquatic life and ecosystems. Furthermore, these changes 
in water temperature can also lead to increased flooding and 
droughts in some areas. It is therefore essential that we take 
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Fig. 1 Schematic representation of various functions offered by water bodies

Fig. 2 Global water distribution

action to reduce our emissions in order to protect our water 
sources from further damage.

3 Eutrophication in water bodies
When nutrient like nitrate and phosphate increases 
along with favorable conditions water bodies suffer from 

eutrophication. This phenomenon includes Harmful Algal 
Blooms (HABs) and anoxic events [12]. HABs are harm-
ful for the waterbodies because it produces toxins and 
excess biomass (algae). Excess biomass covers the top 
surface of waterbody and decreases the light penetra-
tion which eventually results into less dense submerged 
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aquatic vegetation  [13]. When this access biomass starts 
decaying it triggers high oxygen consumption and causes 
mortality of aquatic life [14]. Eutrophication is influenced 
by a multitude of interacting factors, making it difficult to 
account for every individual factor. Table 1 [15] illustrates 
the major known contributors to eutrophication. The path-
ways for GHG emissions are impacted by a few com-
posite elements that can either accelerate (+) or deceler-
ate (−) emissions. These elements can be categorized into 
primary and secondary parameters. Primary parameters 
include climatic conditions such as wind speed, precipi-
tation, water temperature, and run [16, 17]. On the other 
hand, secondary parameters consist of dissolved oxygen 
(DO), organic matter (OM), and other water parameters 
such as the average depth, reservoir age, thermal stratifi-
cation, nutrients (C, P, N) and their ratios, carbon-nitrogen 
content, nitrogen-phosphorous content, carbon-nitrogen 
ratio, total nitrogen content, total phosphorous content, 
etc. [18, 19]. GHG emissions exhibit a significant correla-
tion with various factors such as DO, fertilizer content, 
pH, wind speed, mean depth, water temperature, and ther-
mal stratification. However, the correlation of each fac-
tor with GHG emissions can be different. For example, pH 
has a strong correlation with CO2 but has a positive rela-
tionship with N2O. Methanogens can produce CH4 in a pH 
range of 6 to 8, but they are sensitive to it. CO2 released 
during respiration converts to carbonic acid, leading to 
a decrease in the pH of water bodies. Alkalinity, total dis-
solved solids, DO, and pCO2 have a negative association 
with pH. The relationship between pH and N2O emission 
is complex. The pH range between 7–8 is where denitrifi-
cation produces the most N2O [20]. Positive and negative 
correlation of factors reflected in the Table 1. 

3.1 Effect of eutrophication over GHG emissions from 
inland water
Eutrophication have direct as well as indirect impact 
on GHGs emission form the waterbodies (Fig.  3). Direct 
emissions relate to water quality parameters such as dis-
solved oxygen, nutrient loading and organic matter pres-
ent or biotic components [21–23]. Growth of algal blooms 
affects water chemistry and aquatic ecosystem which may 
increase GHGs and falls under indirect emission. In ben-
thic zone anaerobic conditions prevails due to lack of oxy-
gen and methane is hence form as a product of biometh-
anation (Fig.  3). Methane emission pathway is generally 
ebullition. Due to the mineralization of carbon from OM 
and the consumption of oxygen ( O2 ) by methanogens, CO2 
is produced [17]. Generally nitrous oxide (N2O) emission 
is very less from lakes but if waterbody receive agricul-
tural runoff with high content of fertilizers or waste with 
high nitrogen percentage, it may accumulate and increase 
N/P ratio, this lowers the DO content and promotes denitri-
fication, allowing for the formation and emission of N2O. 
Khoiyangbam and Chingangbam [20] carried out a study 
in North India and detected a considerable seasonal change 
in DO, but no relationships between N2O emission and DO 
were seen. The shift in dominating primary producers and 
the bloom of toxic algae are two major factors that influ-
ence how eutrophication indirectly affects GHG emissions. 
Macrophytes produce CH4 emissions in three stages: 

1.	 As a result of diffusion, emerging plants release CH4 
into the atmosphere. 

2.	Methanotrophic bacteria work to oxidize CH4 on the 
surface of macrophytes. 

3.	 Methanotrophic bacteria that provide oxygen to sedi-
ments carry out the decreasing bio methanation process. 

Table 1 Factors affecting eutrophication (Adapted and modified from Mondal et al. [15])

Factors Range Effect on CH4 Effect on CO2 Effect on N2O

Sulphate 13.2–25 mg L–1 Negative Impact - Positive Impact

Dissolved Oxygen
2.23–16.69 mg L–1 Negative Impact Negative Impact Positive Impact

2.80–8.65 mg L–1 - - Non-significant

Total Phosphorous
0.00–2.52 mg L–1 Positive Impact Positive Impact Positive Impact

2.17–7.10 mg L–1 - - Positive Impact

pH

6.95–8.34 Non-significant Non-significant -

6.90–9.10 Negative Impact Negative Impact Negative Impact

6.54–7.92 - - Positive Impact

Age of the reservoirs Less than 10 years Positive Impact Positive Impact Not reported

Mean depth 5–23 m (shallow) Positive Impact Negative Impact Not reported

Total nitrogen
1.81–57.70 mg L–1 - Positive Impact Positive Impact

0.24–2.01 mg L–1 - - Positive Impact
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Fig. 3 Schematic representation of various mechanisms involved in the GHG emission from inland waterbodies

According to a report published by [24], algal blooms 
are expected to become more common during the fol-
lowing several decades as a result of population growth 
and the substantial GHG emissions that inland water-
bodies will produce. GHG emissions from inland waters 
equal 20% of the world's CO2 emissions from fossil fuels 
(9.3 Pg C-CO2 yr–1) [8] and with the continuous eutrophica-
tion of Earth's lentic ecosystems, emissions will increase 
even more. Emissions vary with the lake size and trophic 
level. It was estimated that inland waters will emit about 
2 PgC yr–1 of CO2 , with 1.8 Pg C yr–1 originating from riv-
ers and streams and 0.32 to 0.50 Pg C yr–1 from reservoirs 
and lakes [25]. One of the most recent estimates of global 
GHG emissions from lakes and impoundments found that 
CH4 is responsible for about 72% of the climatic impact 
of GHG emissions (in CO2-equivalents) from lakes and 
impounded waters, even though the absolute emissions of 
CO2 are 5 to 10 times greater than those of CH4 and N2O 
(in Tg of carbon or nitrogen yr–1 [26]). This is due to the 
fact that CH4 has up to 34 times the global warming poten-
tial (GHG) of CO2 and is responsible for 20% of the over-
all increase in atmospheric radiative forcing seen since 
1750. CH4 estimation from lakes and ponds are calculated 
to be 69 Tg CH4-C yr–1 globally, or 0.85 Pg of CO2 as CO2 
emission equivalents [27]. Although it is well known that 
many variables, such as lake depth and sedimentation 
rates [28, 29], affect the rates of CH4 emission but the lack 
of global data on these variables has made it difficult to 

include them into models for estimating CH4 emissions. 
Several lake studies that demonstrate a positive correla-
tion between CH4 emissions and productivity indicators 
including total phosphorus (TP) and chl-a.  [26,  30,  31]. 
Moderate global increases in eutrophication could trans-
late to 5–40% increases in the GHG effects in the atmo-
sphere, adding the equivalent effect of another 13% of fos-
sil fuel combustion or an effect equal to GHG emissions 
from current land use change. Increased eutrophication 
will elevate the methane evolution by 30–90% in  about 
next 10 years.

4 Waste algae from eutrophicated water bodies possible 
feedstock for resource recovery
Recovery of resources from wastewater is a global 
concern that contributes to the circular bioeconomy. 
Eutrophicated lakes are a major cause of environmental 
pollution. Algal bloom harvested from such lake is a good 
source of major organic compounds [32, 33]. These waste 
algae have also the potential to produce methane (anaero-
bic digestion) and volatile fatty acids (VFAs). Anaerobic 
digestion is multifaceted process which involves the 
breakdown of complex organic compounds into small 
molecular components with the help of various bac-
teria  [34,  35]. A number of useful bioproducts can be 
obtained from waste algae harvested from eutrophicated 
lake. Some of the marketable and useful products from 
the algae are summarized below. 
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4.1 Waste algae to marketable products
Waste microalgae can be used in multiple ways such as 
medical purposes, biofuel, biogas, fertilizer, water treat-
ment aid and biodiesel. The pharmaceutical, nutraceuti-
cal, energy and cosmetic sectors may extract numerous 
high-value compounds from algae [36]. It has a huge scope 
in global market. By 2024, the global market for products 
generated from microalgae is projected to reach USD 1,143 
million [37]. Algal goods are classified globally as nutra-
ceuticals, dietary and support supplements, medicines, 
paints, colorants, and other products. Different types of 
algae and associated marketable products are summarized 
in the Table 2 [38–58]. Algal-derived coproducts such as 
astaxanthin, squalene, -carotene, carotenoids, omega-3 
polyunsaturated fatty acids (docosahexaenoic and eicosa-
hexaenoic), and phycobiliproteins are increasingly popu-
lar in the nutraceuticals and pharmaceutical industries and 
are a major source of income for algae-producing busi-
nesses worldwide. Some algae strains are produced indus-
trially as aquaculture feed due to their high nutrient val-
ues and vitality contents. Spirulina, Chlorella, Dunaliella, 
and Nannochloropsis are some examples of microalgae 
strains used as alternative feeds to traditional aquaculture 
feeds. Spirulina and Chlorella are rich in protein, vita-
mins, minerals, and antioxidants, while Dunaliella is high 
in beta-carotene and other carotenoids. Nannochloropsis 
is rich in polyunsaturated fatty acids essential for fish 
growth and health. Using microalgae as aquaculture feed 
can be more environmentally friendly and cost-effective 
than traditional feeds. These strains can also be used as 
a source of ethanol, hydrogen, and lipids.

4.2 Waste algae for bioenergy production
Microalgae have become a potential biomass feed for 
making carbon-neutral biofuels and bioenergy as an alter-
native to fossil fuels. Similar to a petroleum refinery, 
a biomass-based biorefinery combines integrated biolog-
ical and thermochemical conversion processes to create 
a variety of biofuels, biochemicals, and bioproducts.

4.2.1 Biodiesel
Biodiesel is one of the most valuable products that can be 
derived from micro-algae. Microalgae can produce bio-
diesel 200 times more efficiently than traditional crops since 
they can be harvested after only a few hours to ten days of 
growing  [59]. After using organic solvents to extract lip-
ids from microalgal biomass, algae-based biodiesel manu-
facturing has been done successfully in laboratory circum-
stances [60]. It is recommended to maintain an appropriate 
level of inorganic carbon as well as carbon sources that 
can be easily hydrolyzed and other readily available nutri-
ents in order to accelerate algae metabolism [61]. Although 
some species of microalgae, like Botryococcus braunii and 
Chlorella vulgaris, have been shown to possess >50% lipid 
content by dry weight of its mass, making them excellent 
feedstock for production of biodiesel [62]. Lipids are one of 
the key components that can be used to produce biodiesel 
from microalgae. When the lipid content of microalgae is 
high, it means that there is a larger amount of oil that can be 
extracted from the microalgae, which can then be converted 
into biodiesel through a process called transesterification. 
Although algae biofuels have shown better performance as 
transportation fuels than fossil fuels, the unit cost of algae 

Table 2 Types of algae and associated marketable products

Product Description Algae Examples References

Biofuels Algae can be converted into biodiesel, Hydrogen, ethanol, methane 
and bio-oil.

Chlorella, Nannochloropsis, 
Dunaliella, Scenedesmus [38–44]

Nutraceuticals Algae contain various nutrients and bioactive compounds that can be 
extracted and sold as supplements or functional food ingredients.

Spirulina, Chlorella, Euglena, 
Haematococcus [45–47]

Animal feed Some types of algae can be used as a feed supplement for livestock 
and aquaculture.

Chlorella, Scenedesmus, 
Nannochloropsis, Isochrysis [48]

Fertilizer Algae can be processed into organic fertilizer, which can be used to 
enrich soil and promote plant growth.

Ascophyllum, Ecklonia, Fucus, 
Laminaria [49, 50]

Cosmetics Algae-derived ingredients are used in various cosmetic products, such 
as moisturizers, facial masks, and hair conditioners.

Porphyridium, Chlorella, Spirulina, 
Dunaliella [51]

Bioplastics Some species of algae can be used to produce biodegradable plastics. Chlorella, Spirulina, Euglena, 
Arthrospira platensis [52, 53]

Wastewater 
treatment Algae can be used to remove nutrients and pollutants from wastewater. Chlorella, Scenedesmus, 

Desmodesmus, Coelastrella sp [54–57]

Carbon credits Algae-based carbon capture and utilization technologies can generate 
carbon credits that can be sold in emissions trading markets.

Chlorella, Nannochloropsis, 
Scenedesmus, Dunaliella [58]
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Fig. 4 Flow diagram of effective production of bioenergy through utilization of waste algal biomass from eutrophic water

fuels (expected to reach 2.0 to 2.8 USD L−1) is significantly 
higher than that of fossil fuels (estimated to be approxi-
mately 1  USD  L−1). In spite of this, it is anticipated that 
algal biofuels would establish a 75 percent market share by 
the end of the next decade, according to the present sustain-
able trend of development [63]. The commercialization of 
algae-based biofuels depends on the advancement of feasi-
ble and algae cultivation, algal oil extraction, and algal to 
biodiesel conversion sustainable technologies.

4.2.2 Bioethanol
The Weizmann process, also known as ABE (acetone-bu-
tanol-ethanol) fermentation, is used to make bioetha-
nol. The various feedstocks used to make this liquid fuel 
include corn, soybeans, wheat straw, woodchips, and, 
more recently, microalgae. A number of countries, includ-
ing Brazil, China, and India, have started making bioeth-
anol for the use as a commercial fuel [64]. Bioethanol is 
chosen over fossil fuels because of its less environmental 
impact. As it contains less amount of sulphur than gaso-
line, and thus lowering the emissions of damaging green-
house gases during combustion. Moreover, bioethanol 
contains approximately 66% energy contained by gasoline 
in the same volume [32]. Algae are one of the most desir-
able biomasses for the production of bioethanol. As these 
microorganisms are able to survive in municipal or indus-
trial wastewater  [65]. This aids bioremediation since the 
plants consume CO2 and other nutrients for photosynthesis, 
thereby purifying the water [66]. Starch, a storage-related 

substance, or cellulose can both be fermented to produce 
bioethanol (a component of the cell wall)  [67]. The  cell 
walls of blue-green algae, such as Spirogyra species and 
Chlorococum sp., contain large concentrations of reserved 
polysaccharides  [68]. The high carbohydrate content of 
algae makes them a desirable feedstock for bioethanol 
production. Common algae used for bioethanol produc-
tion include Chlamydomonas, Glacilaria, Scenedesmus, 
Euglena gracilis, Porphyridium, Chlorella, Dunaliella, 
and Chlorophyllum [68].

4.2.3 Biomethane
In the past two decades, various microalgal strains have 
been extensively explored for biomethane production 
through AD  [69]. Further, microalgal biomass harvested 
from the wastewater treatment as well as from the eutro-
phic water bodies has been reported as an excellent feed-
stock for biomethane production  [70,  71]. Consequently, 
AD of microalgal biomass has emerged as an established, 
long-term solution for recovering renewable energy from 
wastewater and eutrophic water bodies. The possible 
mechanisms and process involved in the AD of microal-
gal biomass is depicted in Fig. 4. Further, as in the case of 
other feedstock such as cattle dung, the volatile solid (VS) 
concentration in the digester plays a crucial role in AD 
of microalgal biomass. High VS loading results in a con-
siderable reduction of the digester size hence improving 
the land footprints and the overall economics of the pro-
cess. However, substrates with a high loading may require 
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a longer hydraulic retention time (HRT) for optimal diges-
tion. In addition, at high VS loading, process stability may 
be reduced, leading to AD failure due to the accumula-
tion of unutilized substrate in the reactor and the reduction 
of anaerobic microflora [72]. For instance, Gou et al. [73] 
found a gradual decrease in methane production and VS 
reduction during the co-digestion of WAS and food waste at 
higher VS loadings. Moreover, Kumar et al. [74] observed 
the highest methane yield of 315 mL g−1 VSfed was achieved 
from 5 g VS L−1 of volatile solid loading, however, methane 
yields at the VS loading at 10 and 15 g VS L−1 , respectively, 
were observed to be lower ( 240 and 224  mL  g−1  VSfed ). 
Additionally, the amount of biomass that may be converted 
into biomethane depends on the organic content of the sub-
strates. Despite recent efforts to enhance the AD of algae, 
several significant obstacles still need to be addressed 
before it can be applied in real-world situations. Low 
microalgal productivity of biomass, small carbon-to-nitro-
gen (C/N) ratio, and a difficult along with complex cell wall 
because of its chemical composition are some of the main 
obstacles in microalgal AD [75]. For a successful AD, C/N 
ratio of biomass should be between 15 to 25 [76, 77]. While 
the majority of algal species have a C/N ratio that ranges 
from 4.5 to 8.5. Ammonia (NH4

+) typically builds up in 
the digester due to the small C/N ratio of the feedstock. 
The methanogen activity is then impacted by the stored 
ammonia, which causes the accumulation of volatile fatty 
acids (VFAs), which disrupts microbial activity further in 
the process [78]. The algae-based technology requires only 
22% of the energy demand of intermittent-feed activated 
sludge wastewater treatment systems and has lower global 
warming and eutrophication potential [79]. 

4.2.4 Challenges in bioenergy generation
The production of bioethanol and biodiesel using processes 
like fermentation and transesterification faces several bod-
ies challenges, as highlighted by Osman et al. [2] one signif-
icant challenge is the availability and cost of raw materials. 
Rapeseed, soybeans, and sunflowers are said to be effi-
cient feedstock for the production of biodiesel, while sug-
ar-based crops like sugar beetroot and sugarcane contain 
a significant amount of saccharose that can be extracted 
and fermented into bioethanol [2, 3]. For instance, research 
have shown that the price of corn, a  primary feedstock 
for bioethanol production in the United States, can fluctu-
ate depending on weather conditions and market demand, 
affecting the profitability of bioethanol production. 
Similarly, weather conditions change from place to place so 

as the primary feedstock and associated cost. Furthermore, 
the conversion of feedstocks into biofuels can require sig-
nificant energy input [4], with some estimates suggesting 
that the energy required to produce bioethanol and bio-
diesel can be higher than the energy contained in the final 
product. Additionally, the potential environmental impacts 
of biofuels production, including land-use change, defor-
estation, and greenhouse gas emissions. Finally, the com-
mercial viability of biofuels is affected by government poli-
cies and market factors. Policy support and incentives have 
played a crucial role in the growth of the biofuels industry. 
Biomethane generation using anaerobic digestion requires 
significantly less energy and also generates less GHG. Net 
GHG emission from hydrothermal liquefaction and trans-
esterification is reported to be −44 to 35 and −75 to −10 [5]. 
Due to its low net energy ratio (0.71) and GHG emissions 
[60.84  g  CO2-equivalent (MJ biogas)−1], anaerobic diges-
tion systems with hydrothermal pretreatment are more sus-
tainable and industrially feasible [5].

5 Conclusions and ways forwards
Algae consortia in natural water bodies are very differ-
ential, the composition can vary from time to time, so 
their most effective utilization way is full of uncertainty. 
Optimization of their harvest has a high importance both 
on cost efficiency and on maintaining the living condi-
tion of the water body. Available literature reflects algae is 
emerging as a promising source of green energy and a key 
component of the circular economy. It can be used to pro-
duce marketable products such as biofuels, pharmaceuti-
cals, and food supplements. These products are not only 
beneficial for the environment but also have the poten-
tial to become future fuels. Although production pro-
cesses of these products also require energy input, which 
is also a challenge. For instance, bioethanol and biodiesel 
requires ample energy input which make the conversion 
not very economic feasible. Algae can be grown any-
where, even in places with limited resources such as des-
erts or saltwater ponds. This makes them an ideal choice 
for countries that lack access to traditional sources of 
energy like oil and gas. Due to urbanization algal blooms 
are emerging as a problem which can also be used for bio-
energy production, GHG mitigation and secondary uses. 
Furthermore, algae are easy to cultivate and require fewer 
resources than other forms of green energy production. 
These facts enable to use them as an attractive option for 
businesses looking to reduce their carbon footprint while 
still producing a marketable product. Algae has become 
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increasingly important as a tool for greenhouse gas mit-
igation. Algae can absorb carbon dioxide and convert it 
into oxygen, therefore helps in reducing the amount of 
carbon dioxide emissions in the atmosphere. Additionally, 
algae can be used to produce biofuels, which can replace 
traditional fossil fuels and help reduce emissions from 
transportation. As such, waste algae have a wide range of 
potential uses that could help reduce greenhouse gas emis-
sions from water bodies. Main limitations of the study is 
the high and uncontrolled variability of native algae con-
sortia, strongly depending on location and water quality, 
which highly influences and limits the way of utilization. 
Regarding future directions, improvements in harvesting 
technologies can play a decisive role in reducing the unit 
cost of native algae. Besides, we would like to highlight 

the importance of algae-based biogas not only in energy 
production, but also in electricity storage. By combining 
algae with solar panels, the efficiency of biogas-fired pow-
er-to-gas systems can be highly increased. The power-to-
gas process allows for the recovery of CO2 in biogas (which 
is worthless for cogeneration) and the storage of electric-
ity, which can reduce the load on the national electricity 
network and allow for more widespread use of weather-de-
pendent renewable energy sources (solar, wind).
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